首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
深地震探测揭示的华北及东北地区莫霍面深度   总被引:6,自引:0,他引:6  
从20世纪70年代以来,在我国华北及东北地区进行了大量的深地震探测研究.本文通过对该地区的深地震探测研究的总结和梳理,探讨了该区的莫霍面深度与变化及其地球动力学意义.结果表明:华北地区最深的莫霍面出现在内蒙褶皱带内,最浅的莫霍面出现在渤海湾盆地.东北地区最深的莫霍面出现在大兴安岭地区,最浅的莫霍面出现在依兰-伊通断裂带...  相似文献   

2.
深地震探测揭示的华南地区莫霍面深度   总被引:15,自引:2,他引:13  
从20世纪70年代以来, 在华南地区进行了大量的深地震探测研究。本文通过对华南地区的深地震探测研究的总结和梳理, 探讨了华南大陆及其邻近海域的莫霍面变化情况, 结果表明: 华南大陆莫霍面形态变化较大, 总体变化趋势是由西部向东部呈逐渐抬升; 华南大陆最深的莫霍面出现在攀西地区北缘, 最浅的莫霍面出现在衢州盆地, 两者差35 km; 华南地区周缘断裂均存在莫霍面错断; 华南加里东造山带莫霍面深度浅于台湾造山带; 东海边缘海与南海北缘地壳厚度明显不同。这些特征可能指示了不同区域所经历的岩石圈及地壳演化过程不同, 其中攀西地区的莫霍面较厚可能同青藏高原物质东流有关, 华南造山带的地壳减薄缘于后期遭受的伸展作用, 东海及南海的莫霍面深度反映了两者处于不同的陆缘位置, 前者为活动大陆边缘, 后者为被动大陆边缘。  相似文献   

3.
天山分段性的地球物理学分析   总被引:14,自引:3,他引:14  
赵俊猛  李植纯  马宗晋 《地学前缘》2003,10(Z1):125-131
天山造山带纵向延绵 30 0 0多km ,其主要部分在国外。文中根据横跨天山的卡拉库姆—新都库什天然地震剖面、沙雅—布尔津综合地球物理剖面、库尔勒—吉木萨尔综合地球物理剖面以及可可托海—阿克塞剖面的探测研究结果 ,综合分析天山造山带的岩石圈结构、构造分段以及不同段盆山耦合特点的差异特征。卡拉库姆—新都库什天然地震剖面揭示了费尔干纳盆地由北向南插入到南天山之下约 2 0 0km深处 ;沙雅—布尔津综合地球物理剖面表明塔里木盆地向天山造山带“层间插入与俯冲消减” ,俯冲的最大深度约 180km ,而准噶尔盆地与天山造山带主要以走滑接触为主 ;库尔勒—吉木萨尔综合地球物理剖面又得出塔里木盆地与准噶尔盆地同时向天山造山带对冲的结论 ,俯冲的深度约 16 0km ;可可托海—阿克塞剖面位于天山造山带的东端 ,探测结果没有发现明显的岩石圈规模俯冲现象。这些资料对于天山造山带的分段性及盆山耦合类型的差别研究提供了岩石圈尺度的深部依据。  相似文献   

4.
若尔盖盆地和西秦岭造山带作为青藏高原东北缘典型的新生代盆山构造,其接合部位的岩石圈结构及其深部构造关系为青藏高原东北缘板块碰撞的深部过程等研究奠定基础。横过盆山结合部位的深地震反射剖面长约63km,记录时间30s(TWT),探测深度超过莫霍面深达岩石圈地幔。该剖面首次揭露出青藏高原东北缘的盆山结合部位地壳和上地幔盖层的结构,发现了若尔盖盆地和西秦岭造山带下地壳以北倾为主的强反射特征,这种北倾的反射特征提供了若尔盖盆地俯冲到西秦岭造山带之下,而西秦岭造山带逆冲推覆到若尔盖盆地之上的地震学证据,初步揭示出若尔盖盆地和西秦岭造山带在挤压构造体系下形成的岩石圈尺度的构造关系,近于平坦的Moho反射特征反映两者在造山后期又经历了强烈的伸展作用。  相似文献   

5.
莫霍面地震反射图像揭露出扬子陆块深俯冲过程   总被引:21,自引:0,他引:21  
近垂直深地震反射剖面对莫霍面变化的观测 ,强有力地说明大陆莫霍面的复杂特征记录了岩石圈的构造历史。横过大别山造山带前陆的深地震反射剖面长约 1 4 0km ,记录时间达 3 0s ,探测深度超过莫霍面深达岩石圈地幔。深地震反射剖面揭示出扬子陆块与大别山造山带结合部位的岩石圈精细结构、清晰的莫霍面及其变化特征。作为相关解释的第一步 ,我们将探测到的莫霍面变化特征与其他特殊反映不同地质年代和岩石圈构造历史的深地震反射剖面进行对比 ,以追索扬子陆块与大别山造山带的岩石圈构造过程。总体北倾的莫霍面和同样北倾的下地壳结构记录了中生代扬子陆块的向北俯冲。北倾的莫霍面错断、叠置现象描述出扬子陆块的俯冲过程。大别山前向北和向南倾斜的交叉反射图像 ,反映了扬子陆块与大别山造山带岩石圈尺度的碰撞关系  相似文献   

6.
苏鲁造山带深部构造的接收函数图象   总被引:3,自引:0,他引:3  
刘因  汪青  姜枚  王亚军 《岩石学报》2009,25(7):1658-1662
宽频地震探测获得横切苏鲁造山带的滨州-日照剖面和蓬莱-青岛剖面的接收函数图象。在图中识别出一系列密度界面和断裂面。新Moho面深度35~41km,形态清晰连续完整,表明苏鲁造山带形成以来的壳幔相互作用已经相当彻底。苏鲁造山带和胶辽朝地块的岩石圈底面深度105km,靠近郯庐断裂逐渐抬升到90km。在苏鲁造山带内部识别出了造山过程中形成的构造界面。它们所勾画出的深部构造图案支持扬子板块拖带北中国板块边缘深俯冲剥蚀模型,并且指示苏鲁超高压变质带的北界位于莱西一线的胶莱盆地之下。  相似文献   

7.
青藏高原隆升对新疆天山山脉地壳-上地幔构造的影响   总被引:1,自引:0,他引:1  
依据地震层析和接收函数的结果获得了天山山脉东段和西段的深部构造的速度图像,探讨了印度板块向北推进和青藏高原隆升对天山山脉造山作用的影响以及天山山脉不同地段的地壳上地幔构造的差异。克拉玛依—库车剖面上清楚地展示出,天山是由高速和低速的地体拼合而成。来自塔里木的高速体向北俯冲到天山达200km以下的深度,而来自准噶尔盆地的高速体则没有明显地向南推进,说明由南向北的推进是很强的,它是造成天山山脉继续隆升的主要动力,从而造就了天山山脉。天山山脉在Moho面以上的部分是中天山北缘断裂和中天山南缘断裂之间的低速体与两侧的高速体拼合成的,其南北宽度约350km,向深度延伸越过200km。塔里木盆地和准噶尔盆地均为高速体的范围,天山山脉东段Moho面以上的地壳部分,南部高速体有向北推进和俯冲的特征,但不明显。夹在两盆地之间的天山主要为低速体,仅在乌鲁木齐和北天山山前断裂以南有残留的高速体,深度不超过30km,这表明天山是由速度不同的地质体挤压而拼合成的。天山延伸到乌鲁木齐以东,向深部的延伸仅仅100km上下。在富蕴—库尔勒剖面上,塔里木板块向北的推进相对于克拉玛依—库车剖面有所减弱。天山西段表现出强烈的造山作用,向东逐步减缓,到达天山的东段,虽然天山深部的构造活动仍然在继续进行,地震活动频繁,可是,活动区域集中在天山底部不过100km上下。说明山根的范围比西部减少了近一半。  相似文献   

8.
由地震探测揭示的青藏高原莫霍面深度   总被引:12,自引:5,他引:7  
全球最新、规模最大的青藏高原造山带是研究陆陆汇聚、板块俯冲和高原隆升等大陆动力学问题的天然实验室。自20世纪50年代至今, 已经积累大量被动源地震观测和主动源地震探测资料用于揭示青藏高原的地壳与上地幔结构, 勾勒出青藏高原的壳幔结构的基本特征。本文在汇总前人工作基础上, 通过对深地震测深、深地震反射剖面和宽频地震观测三种地震方法资料的梳理, 探讨青藏高原的莫霍面深度及其分布特征。结果表明, 青藏高原莫霍面形态复杂, 深度变化很大, 分布总体特征呈现出中间浅, 南部较深, 北部较浅, 西部较深, 东部较浅的趋势, 最深的和最浅的莫霍面可以相差40 km。这种变化趋势记录了印度板块和欧亚板块的相互作用使高原地壳增厚、减薄过程, 并驱使地壳物质由西向东流动。  相似文献   

9.
新生代以来,中国西部的一系列古老造山带和盆地在印-亚板块汇聚作用下重新复活,在青藏高原外围形成了现今全球最大的陆内挤压构造域,被称为环青藏高原盆山体系,其形成过程与机制对深入认识陆-陆碰撞如何影响大陆内部变形有重要意义。柴达木盆地是中国西部重要的新生代沉积盆地,四周均被巨型造山带所围限,共同构成了环青藏高原盆山体系北东段的主体。本文利用最新的石油地震勘探数据、地表地质和已发表的深反射地震数据,将上地壳变形与岩石圈深部变形有机结合,系统刻画了柴达木盆地与周缘三大造山带之间岩石圈尺度的构造耦合关系,在此基础上探讨环青藏高原盆山体系北东段的盆山汇聚过程与机制。柴达木盆地与南侧祁曼塔格—东昆仑山、北东侧南祁连山之间在上地壳尺度发育一系列倾向造山带的基底卷入高角度逆断裂体系,自新生代早期就开始活动,以垂直的基底抬升为主,水平缩短量有限;在下地壳和岩石圈地幔深度则发育倾向盆地一侧的深大断裂,使得柴达木盆地与周缘造山带之间发生截然的莫霍面错断。这些变形特征揭示柴达木盆地与南侧祁曼塔格—东昆仑山、北东侧南祁连山之间发育岩石圈尺度的构造楔,即盆地的岩石圈楔入至增厚的造山带下地壳,其发育主要受盆地与造山带...  相似文献   

10.
钻遇莫霍面是人类一直以来的梦想。深海海底是地球上离莫霍面最近的地方,目前有研究推测南海是世界上莫霍面深度最浅的海域之一,但缺乏足够的直接证据。深反射地震探测可以直接揭示岩石圈的构造形态,是莫霍面探测的重要手段。本文基于长达15000 km的深反射多道地震剖面的解释、处理、制图和分析,结合前人的研究,形成了南海海盆区莫霍面反射特征和空间分布的初步认识。① 南海东部次海盆南部早期经历了较快速扩张,岩浆供应充足,受扩张停止后岩浆活动影响较小,基底平坦,地质构造相对简单,同时洋壳地震速度结构不存在异常,且有较强的广角莫霍面反射波和可识别的地幔顶部折射波,具备莫霍面钻探的基本条件。② 南海海盆不同区域的莫霍面反射强度存在较大差异。其中东部次海盆莫霍面反射最为强烈且清晰,西北次海盆次之,西南次海盆仅有零星出现的清晰莫霍面反射且可信度不高。③ 识别南海海盆区莫霍面地震反射长度超过3500 km,首次形成了海盆区深度域莫霍面地震反射空间分布图。与重力反演的莫霍面深度相比,利用深反射多道地震计算的莫霍面深度细节更为丰富,并且可以在垂向上清晰刻画莫霍面的结构。整体上,南海海盆区莫霍面地震反射强烈和可信度高的区域中,深度较浅的区域之一是东部次海盆南部,最浅处仅约9. 5 km,其中水深4. 01 km,洋壳厚度仅5. 54 km。综合判断,东部次海盆南部是南海重要的莫霍面钻探备选区,这对南海莫霍面钻探选址具有重要意义。  相似文献   

11.
The crustal depth section obtained from deep seismic soundings along the Koyna II (Kelsi-Loni) profile, which lies near latitude 18°N roughly in the east-west direction in that part of the Deccan Trap Maharashtra State, India, shows a number of reflection segments below the Deccan Traps down to the Moho discontinuity. A deep fault below the Deccan Traps 13 km east of Mahad divides the entire cross-section including the Moho boundary into two crustal blocks. The reflection segments show updip towards the west coast in the western block. The Moho discontinuity which is at a depth of 39 km near the deep fault starts rising towards the coast, reaching a depth of 31.5 km at the west coast. The eastern block is thrown up by 1.5 km with respect to the western block along the deep fault. A structural contour map of the Moho discontinuity for the Koyna reservoir area has been prepared from the present results and the crustal information obtained along the Koyna I profile (Kaila et al., 1979a), shows that the deep fault in the Koyna area is aligned in the NNW-SSE direction.Refraction seismic data analysis by the wave front method reveals that the thickness of the Deccan Trap increases towards the west coast. The Deccan Trap is 600–700 m thick in the eastern region between Nira (SP 130) and Loni (SP 200) and attains a thickness of 1500 m at 10 km east of the west coast. The longitudinal wave velocity in the Deccan Traps along the profile varies from 4.8 to 5.0 km/sec and in the crystalline basement from 6.0 to 6.15 km/sec. A tentative isopach contour map of the Deccan Traps and a tentative structural contour map of the Pre-Deccan Trap contact have been prepared for the Koyna reservoir area from the results along the Koyna II and Koyna I profiles. A flexure aligned in a NNW-SSE direction, in the Pre-Deccan Trap contact, which is an expression of the deep fault into the basement, has been clearly brought out. The flexure coincides in general with the orientation of the Deccan volcanic scarp in this area.  相似文献   

12.
The Chaochou Fault, a major geological boundary in southern Taiwan is considered to be a part of the convergent plate boundary between the Eurasia Plate and the Philippine Sea Plate. We applied the Common Conversion Point stacking technique to teleseismic radial receiver functions and obtained Moho variation and crustal structure across the Chaochou Fault. In the Eurasia Plate to its west, the Moho depth is about 37 km and the crust is subducting to the east beneath the Philippine Sea Plate with a dip angle of about 30° between the Backbone Belt and the Tananao Schist. In the Philippine Sea Plate, the Moho depth is about 17 km. The Longitudinal Valley marks the collision boundary between the Eurasia Plate and the Philippine Sea Plate. The results suggest that the depth extent of the Chaochou Fault is about 30–35 km and the fault becomes a “shallow-angle” thrust fault at depth. The Common Conversion Point image also shows several bending interfaces of velocity contrast in the crust. We proposed a simple model to explain the Philippine Sea Plate and Eurasia Plate collision process and the observed crustal deformations.  相似文献   

13.
多玛-德庆-达孜断面壳幔密度结构特征   总被引:1,自引:0,他引:1  
利用人机交互重震联合反演的方法研究了多玛-德庆-达孜断面的二维壳幔横向密度结构特征。模拟结果显示,剖面下的地壳内部大部分存在低速层,念青唐古拉山两侧的德庆、羊八井附近存在两条深大正断层,切割并抬升了其下的中地壳低密度层,低密度层整体被向上抬升5~10 km,使得念青唐古拉山深部表现为一个地垒构造。念青唐古拉山位于莫霍面由浅变深的缓坡上,向东逐渐变深。软流圈在念青唐古拉山下形状发生变化,表现为“上凸”特征。  相似文献   

14.
The Deep Structure Feature of the Sichuan Basin and Adjacent Orogens   总被引:1,自引:0,他引:1  
The basin-mountain system in the Sichuan Basin(SCB) reflects the main tectonic activity and the orogenic denudation in this region. The seismic probing work reveals the deep structure of the basin-mountain system. The seismic work was re-sampled to the Moho depth and the sedimentary thickness as well as the P-wave velocity-depth function to analyze the deep structure of the SCB and adjacent orogens. The results show two deposit centers in the SCB: the Deyang area in the west and the Nanchuan area in the east and depression uplift exists in the southwestern part of the SCB; the Moho shallowers gradually from the west to east(ca. 62-36 km deep),the South-North seismic belt(SNSB) is very distinctive: the Moho depth is much shallower( 50 km)to the east of the SNSB, whereas it is much deeper(50 km)to the west of the SNSB, suggesting that the SNSB rather than the Longmen Shan tectonic belt is a main Moho transition belt; the topography and the top interface of the basement have the same undulation trend when the sedimentary thickness and the Moho depth have a mirror relationship; the low velocity zone developed in the Kangdian thrust and fold belt and Songpan-Garzê belt implied a soft, weak and thick crust there showing tectonic activity in these areas.  相似文献   

15.
A dense nationwide seismic network recently constructed in Japan has resulted in the production of a large amount of high-quality data that have enabled the high-resolution imaging of deep seismic structures in the Japanese subduction zone. Seismic tomography, precise locations of earthquakes, and focal mechanism research have allowed the identification of the complex structure of subducting slabs beneath Japan, revealing that the subducting Philippine Sea slab underneath southwestern Japan has an undulatory configuration down to a depth of 60–200 km, and is continuous from Kanto to Kyushu without disruption or splitting, even within areas north of the Izu Peninsula. Analysis of the geometry of the Pacific and Philippine Sea slabs identified a broad contact zone beneath the Kanto Plain that causes anomalously deep interplate and intraslab earthquake activity. Seismic tomographic inversions using both teleseismic and local events provide a clear image of the deep aseismic portion of the Philippine Sea slab beneath the Japan Sea north of Chugoku and Kyushu, and beneath the East China Sea west of Kyushu down to a depth of ∼450 km. Seismic tomography also allowed the identification of an inclined sheet-like seismic low-velocity zone in the mantle wedge beneath Tohoku. A recent seismic tomography work further revealed clear images of similar inclined low-velocity zones in the mantle wedge for almost all other areas of Japan. The presence of the inclined low-velocity zones in the mantle wedge across the entirety of Japan suggests that it is a common feature to all subduction zones. These low-velocity zones may correspond to the upwelling flow portion of subduction-induced convection systems. These upwelling flows reach the Moho directly beneath active volcanic areas, suggesting a link between volcanism and upwelling.  相似文献   

16.
The Qinghai (青海)-Tibet plateau is the newest and biggest orogenic belt in the world and a natural laboratory for researching continental geodynamics, such as continent-continent collision, convergence, subduction, and plateau uplift. From the 1950s to the present, there have been many active-source (deep seismic sounding and deep seismic reflection profiling) and passive-source seismic probing (broadband seismic observations) implemented to reveal the crust-mantle structure. In this article, the authors mainly summarize the three seismic probings to discuss the Moho depth of the Qinghai-Tibet plateau based on the previous summaries. The result shows that the Moho of the Qinghai-Tibet plateau is very complex and its depth is very different; the whole outline of it is that the Moho depth is deeper beneath the south than the north and deeper in the west than in the east. In the Qiangtang (羌塘) terrane, the hinterland of the Qinghai-Tibet plateau, the Moho is shallower than both the southern and the northern sides. The deepest Moho is 40 km deeper than the shallowest Moho. This trend records the crustal thickening and thinning caused by the mutual response between the India plate and the Eurasia plate, and the eastward mass flow in the Qinghai-Tibet plateau.  相似文献   

17.
Claus Prodehl 《Tectonophysics》1981,80(1-4):255-269
The crustal structure of the central European rift system has been investigated by seismic methods with varying success. Only a few investigations deal with the upper-mantle structure. Beneath the Rhinegraben the Moho is elevated, with a minimum depth of 25 km. Below the flanks it is a first-order discontinuity, while within the graben it is replaced by a transition zone with the strongest velocity gradient at 20–22 km depth. An anomalously high velocity of up to 8.6 km/s seems to exist within the underlying upper mantle at 40–50 km depth. A similar structure is also found beneath the Limagnegraben and the young volcanic zones within the Massif Central of France, but the velocity within the upper mantle at 40–50 km depth seems to be slightly lower. Here, the total crustal thickness reaches only 25 km. The crystalline crust becomes extremely thin beneath the southern Rhônegraben, where the sediments reach a thickness of about 10 km while the Moho is found at 24 km depth. The pronounced crustal thinning does not continue along the entire graben system. North of the Rhinegraben in particular the typical graben structure is interrupted by the Rhenohercynian zone with a “normal” West-European crust of 30 km thickness evident beneath the north-trending Hessische Senke. A single-ended profile again indicates a graben-like crustal structure west of the Leinegraben north of the Rhenohercynian zone. No details are available for the North German Plain where the central European rift system disappears beneath a sedimentary sequence of more than 10 km thickness.  相似文献   

18.
A preliminary contour map showing the Mohorovičić discontinuity (Moho) beneath Fennoscandia, adjacent parts of the Norwegian Sea and the North Sea has been compiled on the basis of published information from deep seismic soundings.The Moho contour map shows a 10 km thick crust beneath the investigated basin-region of the Norwegian Sea. It seems that the Vøring Plateau has at least in part a continental structure even if the Moho-depth is only 15 km. A shallow Moho (28–30 km) all along the Norwegian coast is a well established feature. A good correlation between the surface elevation of the mountain range running through Norway and parts of Sweden and the depth of the Moho is also well established. The Gulf of Bothnia is a region of a great Mono-depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号