首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A preliminary contour map showing the Mohorovičić discontinuity (Moho) beneath Fennoscandia, adjacent parts of the Norwegian Sea and the North Sea has been compiled on the basis of published information from deep seismic soundings.The Moho contour map shows a 10 km thick crust beneath the investigated basin-region of the Norwegian Sea. It seems that the Vøring Plateau has at least in part a continental structure even if the Moho-depth is only 15 km. A shallow Moho (28–30 km) all along the Norwegian coast is a well established feature. A good correlation between the surface elevation of the mountain range running through Norway and parts of Sweden and the depth of the Moho is also well established. The Gulf of Bothnia is a region of a great Mono-depression.  相似文献   

2.
New seismic data from the Central Andes allow us to clarify the crustal structure of this mountain chain and to address the problem of crustal thickening. Evidence for the deep crustal root can be observed in both gravimetric and seismological data. Crustal structure and composition change significantly from east to west. In the eastern part of the backarc the Moho discontinuity is clearly recognisable. However only poor Moho arrivals are observed by active seismic measurements beneath the Altiplano and the Western Cordillera where broad-band seismology data indicate such a discontinuity. In the Precordillera, a pronounced discontinuity is detected at a depth of 70 km. Along the coast, the oceanic Moho is developed at a depth of 40 km. There are several processes which can change the petrological and petrophysical properties of the rocks forming the crust. Variations of the classical Moho discontinuity are presented which do not correspond to the petrological crust/mantle boundary. Tectonic shortening in the backarc is the dominant process contributing to at least 50–55% to the root formation along 21°S. In the forearc and arc, hydration of the mantle wedge produced ≈15–20% of crustal thickening. Magmatic thickening and tectonic erosion contributed only ≈5%. The other ≈25% is not yet explained.  相似文献   

3.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   

4.
Studies of sustained activity in the Koyna — Warna Seismic Zone have yielded several models of faults in the basement of the Deccan Traps inferred from geophysical and seismic signatures. There is however, a dearth of unambiguous surface manifestations of such faults, apart from the surface ruptures from the epicentral zone of the December, 1967 earthquake. We report for the first time, an exposed NW-SE trending reverse fault in the Deccan Trap basalts from this region.  相似文献   

5.
本文利用在鄂尔多斯东南缘地区宽频带流动地震台阵记录的远震数据,提取各台站的接收函数,并利用相位加权方 法进行单台多震叠加、H -κ叠加以及共转换点叠加,获得了研究区莫霍过渡带的深度及其变化趋势。研究结果显示,莫霍的 深度由鄂尔多斯块体往东南方向逐渐变浅,在不同区域莫霍具有不同的特征:鄂尔多斯的莫霍深度在42~38 km;渭河-山 西地堑的莫霍出现约3 km的上隆;熊耳-伏牛山的莫霍深度在35~33 km;河淮盆地的莫霍形态比较复杂。相位加权叠加方 法能有效地压制相关性不好的噪音,在部分受噪音及沉积层多次波干扰的台站记录中,对突出莫霍的转换波Ps震相有很大 的帮助。  相似文献   

6.
Shallow and deep sources generate a gravity low in the central Iberian Peninsula. Long-wavelength shallow sources are two continental sedimentary basins, the Duero and the Tajo Basins, separated by a narrow mountainous chain called the Spanish Central System. To investigate the crustal density structure, a multitaper spectral analysis of gravity data was applied. To minimise biases due to misleading shallow and deep anomaly sources of similar wavelength, first an estimation of gravity anomaly due to Cenozoic sedimentary infill was made. Power spectral analysis indicates two crustal discontinuities at mean depths of 31.1 ± 3.6 and 11.6 ± 0.2 km, respectively. Comparisons with seismic data reveal that the shallow density discontinuity is related to the upper crust lower limit and the deeper source corresponds to the Moho discontinuity. A 3D-depth model for the Moho was obtained by inverse modelling of regional gravity anomalies in the Fourier domain. The Moho depth varies between a mean depth of 31 km and 34 km. Maximum depth is located in a NW–SE trough. Gravity modelling points to lateral density variations in the upper crust. The Central System structure is described as a crustal block uplifted by NE–SW reverse faults. The formation of the system involves displacement along an intracrustal detachment in the middle crust. This detachment would split into several high-angle reverse faults verging both NW and SE. The direction of transport is northwards, the detachment probably being rooted at the Moho.  相似文献   

7.
川滇地区重力场特征与地壳变形研究   总被引:10,自引:0,他引:10  
对川滇地区重力场特征进行了研究,获得了研究区内地壳厚度分布及变形特征。总体上,研究区内地壳厚度从西北向东南逐渐减小。川滇菱形块体中内部出现了广泛的地壳增厚现象,并可能一直延伸至菱形块体的最南端。丽江-小金河断裂带在重力场特征上表现为龙门山断裂带向西南的延伸,其东侧主体构造走向等特征与扬子地块一致,推测丽江-小金河断裂带与龙门山断裂、红河断裂带一起构成了扬子地块的西边界。滇西地区布格重力一阶导数与现今地壳变形格局总体一致,主体构造方向为北北西-近南北向,代表了“新”构造主体构造线的方向;上延至45km后,主体构造上转变为以近东西向为主。  相似文献   

8.
Understanding deep continental structure and the seismotectonics of Deccan trap covered region has attained greater importance in recent years. For imaging the deep crustal structure, magnetotelluric (MT) investigations have been carried out along three long profiles viz. Guhagarh–Sangole (GS), Sangole–Partur (SP), Edlabad–Khandwa (EK) and one short profile along Nanasi–Mokhad (NM). The results of GS, SP and NM profiles show that the traps lie directly over high resistive basement with thin inter-trappean sediments, where large thickness of sediments, of the order of 1.5–2.0 km, has been delineated along EK profile across Narmada–Son–Lineament zone. The basement is intersected by faults/fractures, which are clearly delineated as narrow steep conducting features at a few locations. The conducting features delineated along SP profile are also seen from the results of aeromagnetic anomalies. Towards the southern part of the profile, these features are spatially correlated with Kurduwadi rift proposed earlier from gravity studies. Apart from the Kurduwadi rift extending to deep crustal levels, the present study indicates additional conductive features in the basement. The variation in the resistivity along GS profile can be attributed to crustal block structure in Koyna region. Similar block structure is also seen along NM profile.Deccan trap thickness, based on various geophysical methods, varies gradually from 1.8 km towards west to 0.3 km towards the east. While this is the general trend, a sharp variation in the thickness of trap is observed near Koyna. The resistivity of the trap is more (150–200 Ω m) towards the west as compared to the east (50–60 Ω m) indicating more compact or denser nature for the basalt towards west. The upper crust is highly resistive (5000–10,000 Ω m), and the lower crust is moderately resistive (500–1000 Ω m). In the present study, seismotectonics of the region is discussed based on the regional geoelectrical structure with lateral variation in the resistivity of the basement and presence of anomalous conductors in the crust.  相似文献   

9.
Central India is traversed by a WSW-ENE trending Narmada-Son lineament (NSL) which is characterized by the presence of numerous hot springs, feeder dykes for Deccan Traps and seismicity all along its length. It is divided in two parts by the Barwani-Sukta Fault (BSF). To the west of this fault a graben exists, whereas to the east the basement is uplifted between Narmada North Fault (NNF) and Narmada South Fault (NSF). The present work deals with the 2-D thermal modeling to delineate the crustal thermal structure of the western part of NSL region along the Thuadara-Sindad Deep Seismic Sounding (DSS) profile which runs almost in the N-S direction across the NSL. Numerical results of the model reveal that the conductive surface heat flow value in the region under consideration varies between 45 and 47mW/m2. Out of which 23mW/m2 is the contribution from the mantle heat flow and the remaining from within the crust. The Curie depth is found to vary between 46 and 47 km and is in close agreement with the earlier reported Curie depth estimated from the analysis of MAGSAT data. The Moho temperature varies between 470 and 500°C. This study suggests that this western part of central Indian region is characterized by low mantle heat flow which in turn makes the lower crust brittle and amenable to the occurrence of deep focused earthquakes such as Satpura (1938) earthquake.  相似文献   

10.
深地震探测揭示的西北地区莫霍面深度   总被引:6,自引:1,他引:5  
从20世纪70年代以来, 在我国西北地区进行了大量的深地震探测研究。本文通过对西北地区的深地震探测研究的总结和梳理, 探讨了西北地区的莫霍面深度与变化及其地球动力学意义。结果表明: 比起我国其他地区, 西北地区莫霍面无论是埋深还是形态均变化最大, 反映出受印度板块与欧亚板块碰撞远程效应影响, 西北地区地壳整体变形强烈。莫霍面最深(约90 km)位于西昆仑与喀喇昆仑构造结合处, 最浅处位于准噶尔盆地西缘的克拉玛依(约35.5 km), 最深与最浅相差约55 km。在盆山结合部位及大型走滑断裂, 如阿尔金断裂、中天山北缘断裂带等均存在莫霍面错断。天山造山带东西段莫霍面深度变化明显, 西段深于东段。这些特征指示了中国西北部盆山之间的构造关系、天山造山带西段和东段不同的深部动力学机制以及古老断裂带的活化。  相似文献   

11.
A.P Singh  D.M Mall   《Tectonophysics》1998,290(3-4):285-297
In 1967 a major earthquake in the Koyna region attracted attention to the hitherto considered stable Indian shield. The region is covered by a thick pile of Deccan lava flows and characterized by several hidden tectonic features and complex geophysical signatures. Although deep seismic sounding studies have provided vital information regarding the crustal structure of the Koyna region, much remains unknown. The two available DSS profiles in the region have been combined along the trend of Bouguer gravity anomalies. Unified 2-D density modelling of the Koyna crust/mantle suggests a ca. 3 km thick and 40 km wide high velocity/high density anomalous layer at the base of the crust along the coastline. The thickness of this anomalous layer decreases gradually towards the east and ahead of the Koyna gravity low the layer ceases to be visible. Based on the seismic and gravity data interpretation in the geodynamical/rheological boundary conditions the anomalous layer is attributed to igneous crustal accretion at the base of the crust. It is suggested that the underplated layer is the imprint of the magmatism caused by the deep mantle plume when the northward migrating Indian plate passed over the Reunion hotspot.  相似文献   

12.
Gravity and magnetic data were collected and used to study the crustal structure of Jordan. Three new geophysical maps of Jordan were created: a Moho discontinuity map, a crystalline basement surface map, and a map showing the lowest limit of magnetic blocks. Depths of the Curie Isotherm were also calculated. Results indicate that the depth to the Moho discontinuity in Jordan varies from 32 to 33 km in the northwest to 38 km in the southeast. The basement complex rocks outcrop on the surface in the southwest but lie at about 8 km in the northeast. The Curie Isotherm (585 °C) lies at a depth of about 10 km in the area east of the Dead Sea and dips southeastward towards the Al-Sirhan (Wadi Sirhan), southeast Jordan, where it is located at 35 km depth. Local isostasy of rock masses (blocks) in Jordan does not occur. Nevertheless, this does not rule out the possible existence of isostasy in a regional scale at greater depths within the mantle.  相似文献   

13.
Deccan Traps spread over large parts of south, west and central India, possibly hiding underneath sediments with hydrocarbon potential. Here, we present the results of seismic refraction and wide-angle reflection experiments along three profiles, and analyze them together the results from all other refraction profiles executed earlier in the western part of Narmada–Tapti region of the Deccan Volcanic Province (DVP). We employ travel time modelling to derive the granitic basement configuration, including the overlying Trap and sub-trappean sediment thickness, if any. Travel time skips and amplitude decay in the first arrival refraction data are indicative of the presence of low velocity sediments (Mesozoic), which are the low velocity zones (LVZ) underneath the Traps. Reflection data from the top of LVZ and basement along with the basement refraction data have been used to derive the Mesozoic sediment thickness.In the middle and eastern parts of the study region between Narmada and Tapti, the Mesozoic sediment thickness varies between 0.5 and 2.0 km and reaches more than 2.5 km south of Sendhwa between Narmada and Tapti Rivers. Thick Mesozoic sediments in the eastern parts are also accompanied by thick Traps. The Mesozoic sediments along the present three profiles may not be much prospective in terms of its thickness, except inside the Cambay basin, where the subtrappean sediment thickness is about 1000–1500 m. In the eastern part of the study area, the deepest section (>4 km) has thick (∼2 km) Mesozoic sediments, but with almost equally thick Deccan Trap cover. Results of the present study provide important inputs for future planning for hydrocarbon exploration in this region.  相似文献   

14.
南海西北部重磁场及深部构造特征   总被引:9,自引:3,他引:9  
通过对南海重磁数据的重新处理,得到南海西北部自由空间重力异常图、布格重力异常图、磁异常图和化极磁异常图,并对所反映的地球物理场特征加以分析。根据重力场资料对研究区的地壳结构进行了反演计算,结果表明地壳厚度在10~38km之间,总的趋势由陆向洋逐渐减薄,对应于地壳类型从陆壳、过渡壳到洋壳的分布特征。根据磁力资料计算了居里面深度,其埋深变化于11~27km之间,在陆区居里面是下地壳顶界面和莫霍面之间的另一个物性界面,而在海区则接近于莫霍面埋深。  相似文献   

15.
16.
田甜  张景发  姜文亮  赵亚博 《地质学报》2017,91(9):1905-1924
延边地区位于多个微板块的结合部位,区内发育长白山活动火山群,地震活动频繁。本文通过重磁小波多尺度分解与莫霍面、居里面深度反演分析,研究延边地区的微板块地壳结构特征。其中敦化-密山断裂以东的胶辽地块地壳厚度最大,约38~40km,兴凯地块则最小,约34~36km,敦化-密山断裂以西的松嫩地块地壳厚度变化平缓,约36~37km;NE向敦化-密山断裂为延边地区的一级断裂,切穿莫霍面,为松嫩地块的东侧边界;NW向展布的富尔河-红旗河断裂、秋梨沟老头沟断裂与汪清-敬信断裂则属于胶辽地块与兴凯地块之间的缝合带,控制居里面分区及形态,而居里面隆起区及其边缘则多分布火山口,表明居里面的局部隆起与岩浆活动关系密切。  相似文献   

17.
利用最新多道地震剖面资料,结合重力、磁力、地形等地球物理资料,揭示了中沙地块南部断裂空间展布特征、断裂发育时期、断裂内部构造形变特征及深部地壳结构,并基于认识探讨了断裂的发育机制。研究结果认为,中沙地块南部陆缘构造属性为非火山型被动大陆边缘:地壳性质从西北向东南由减薄陆壳向洋陆过渡壳再向正常洋壳发育变化;Moho面埋深从中沙地块下方的26 km快速抬升到海盆的10~12 km;从中沙地块陡坡至其前缘海域的重力异常明显负异常区为洋陆过渡带,在重力由高值负异常上升到海盆的低值正、负异常的边界为洋陆边界。中沙地块南部发育有4组阶梯状向海倾的深大正断裂,主要发育时期为晚渐新世到中中新世。断裂早期发育与南海东部次海盆近NS向扩张有关,后期遭受挤压变形、与菲律宾海板块向南海的NWW向仰冲有关。该研究有助于更好认识南海海盆的扩张历史和南海被动大陆边缘的类型。  相似文献   

18.
Claus Prodehl 《Tectonophysics》1981,80(1-4):255-269
The crustal structure of the central European rift system has been investigated by seismic methods with varying success. Only a few investigations deal with the upper-mantle structure. Beneath the Rhinegraben the Moho is elevated, with a minimum depth of 25 km. Below the flanks it is a first-order discontinuity, while within the graben it is replaced by a transition zone with the strongest velocity gradient at 20–22 km depth. An anomalously high velocity of up to 8.6 km/s seems to exist within the underlying upper mantle at 40–50 km depth. A similar structure is also found beneath the Limagnegraben and the young volcanic zones within the Massif Central of France, but the velocity within the upper mantle at 40–50 km depth seems to be slightly lower. Here, the total crustal thickness reaches only 25 km. The crystalline crust becomes extremely thin beneath the southern Rhônegraben, where the sediments reach a thickness of about 10 km while the Moho is found at 24 km depth. The pronounced crustal thinning does not continue along the entire graben system. North of the Rhinegraben in particular the typical graben structure is interrupted by the Rhenohercynian zone with a “normal” West-European crust of 30 km thickness evident beneath the north-trending Hessische Senke. A single-ended profile again indicates a graben-like crustal structure west of the Leinegraben north of the Rhenohercynian zone. No details are available for the North German Plain where the central European rift system disappears beneath a sedimentary sequence of more than 10 km thickness.  相似文献   

19.
Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China. Then, inversion was conducted for the depth to study the depth variation of the boundary between the crust and upper mantle, namely the Mohorovicic discontinuity (Moho). The results demonstrate that the Moho depth in South China ranges from 30 to 40 km, and the crust thins from west to east, 27-29 km under the continent margin and shallow sea. We think it possible that the Tanlu fault crosses the Yangtze River and extends southwards along the Ganjiang and Wuchuan-Sihui faults to the South China Sea, and that there is an E-W hidden structural belt along 24.5°-26°.  相似文献   

20.
深地震探测揭示的华南地区莫霍面深度   总被引:15,自引:2,他引:13  
从20世纪70年代以来, 在华南地区进行了大量的深地震探测研究。本文通过对华南地区的深地震探测研究的总结和梳理, 探讨了华南大陆及其邻近海域的莫霍面变化情况, 结果表明: 华南大陆莫霍面形态变化较大, 总体变化趋势是由西部向东部呈逐渐抬升; 华南大陆最深的莫霍面出现在攀西地区北缘, 最浅的莫霍面出现在衢州盆地, 两者差35 km; 华南地区周缘断裂均存在莫霍面错断; 华南加里东造山带莫霍面深度浅于台湾造山带; 东海边缘海与南海北缘地壳厚度明显不同。这些特征可能指示了不同区域所经历的岩石圈及地壳演化过程不同, 其中攀西地区的莫霍面较厚可能同青藏高原物质东流有关, 华南造山带的地壳减薄缘于后期遭受的伸展作用, 东海及南海的莫霍面深度反映了两者处于不同的陆缘位置, 前者为活动大陆边缘, 后者为被动大陆边缘。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号