首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Miduk porphyry copper deposit is located in Kerman province, 85 km northwest of the Sar Cheshmeh porphyry copper deposit, Iran. The deposit is hosted by Eocene volcanic rocks of andesitic–basaltic composition. The porphyry‐type mineralization is associated with two Miocene calc‐alkaline intrusive phases (P1 and P2, respectively). Five hypogene alteration zones are distinguished at the Miduk deposit, including magnetite‐rich potassic, potassic, potassic–phyllic, phyllic and propylitic. Mineralization occurs as stockwork, dissemination and nine generations (magnetite, quartz–magnetite, barren quartz, quartz‐magnetite‐chalcopyrite‐anhydrite, chalcopyrite–anhydrite, quartz‐chalcopyrite‐anhydrite‐pyrite, quartz‐molybdenite‐anhydrite ± chalcopyrite ± magnetite, pyrite, and quartz‐pyrite‐anhydrite ± sericite) of veinlets and veins. Early stages of mineralization consist of magnetite rich veins in the deepest part of the deposit and the main stage of mineralization contains chalcopyrite, magnetite and anhydrite in the potassic zone. The high intensity of mineralization is associated with P2 porphyry (Miduk porphyry). Based on petrography, mineralogy, alteration halos and geochemistry, the Miduk porphyry copper deposit is similar to those of continental arc setting porphyry copper deposits. The Re‐Os molybdenite dates provide the timing of sulfide mineralization at 12.23 ± 0.07 Ma, coincident with U/Pb zircon ages of the P2 porphyry. This evidence indicates a direct genetic relationship between the Miduk porphyry stock and molybdenite mineralization. The Re‐Os age of the Miduk deposit marks the main stage of magmatism and porphyry copper formation in the Central Iranian volcano‐plutonic belt.  相似文献   

2.
海南省罗葵洞钼矿围岩蚀变找矿标志   总被引:1,自引:0,他引:1  
海南省罗葵洞钼矿是一处特大型斑岩型钼矿床,赋存于陆相火山岩与隐伏似斑状花岗岩接触界面及其外围,呈隐伏状产出,地表很难见到钼矿化露头.矿区最常见的蚀变是硅化和黄铁矿化,其次有钾化、绢云母化、绢英岩化、云英岩化、伊利石-水白云母化、黑云母化、绿帘石化、次闪石化、绿泥石化、碳酸盐化等,局部尚有叶腊石化、萤石化.其中硅化、钾化、绢英岩化、云英岩化与钼矿成矿关系密切.据初步研究,该区蚀变从火山口相中心,由内向外大致可分为不十分明显的4个蚀变带:强硅化蚀变带、硅钾蚀变带、硅化蚀变带、绿帘石-绿泥石化带.在详查工作中根据面形硅化细脉带,可以确定矿化范围,钾化强烈发育地段为钼矿富集部位.  相似文献   

3.
位于青藏高原东缘的玉龙铜矿是我国最大的斑岩铜矿之一,其形成一致认为与矿区中心产出的二长花岗质复式斑岩体有关,但成矿与复式岩体的确切关系并不清楚。本文通过详细的野外地质填图,特别是矿床8号勘探线12个钻孔的重新编录,在复式岩体中识别出一套花岗斑岩岩枝,岩枝中不规则状石英-钾长石脉广泛发育,同时还见有单向固结结构、粗晶及细晶结构,这些特征表明该岩浆中的流体曾经发生过饱和。同时结合矿床高品位(0.6%,质量分数)铜矿化紧密围绕花岗斑岩分布、含矿脉体自花岗斑岩向外围逐渐由高温石英-钾长石A脉过渡为中低温石英-硫化物脉、热液蚀变自花岗斑岩向外由高温钾硅酸盐化过渡为中低温石英-绢云母化的规律,最终确定这套花岗斑岩为玉龙矿床的成矿斑岩。玉龙铜矿成矿斑岩的厘定,较好地解释了矿床矿化类型及金属的分布规律,为进一步深入理解矿床形成过程提供了帮助。  相似文献   

4.
安徽铜陵桂花冲斑岩铜矿围岩蚀变与矿化作用   总被引:1,自引:0,他引:1  
桂花冲铜矿为安徽铜陵地区新发现的斑岩型铜矿,斑岩体为准铝质高钾钙碱性的花岗闪长斑岩。围岩蚀变与矿化作用是斑岩型矿床成矿过程研究的一项重要内容,对蚀变带岩石开展元素地球化学成分的迁移研究,是分析热液交代蚀变过程的基础。桂花冲铜矿区内围岩蚀变作用比较强烈,蚀变类型主要有钾化、绢云母化、硅化、绿泥石化和碳酸盐化等。蚀变分带比较明显,由内向外依次为钾化带、绢英岩化带和青磐岩化带,矿体主要产于绢英岩化带内。矿化蚀变自早至晚划分为钾长石、石英-绢云母、石英多金属硫化物和碳酸盐4个阶段。蚀变带物质组分迁移结果表明,在蚀变过程中,岩石的主量元素除TiO2、MnO、MgO外,其他元素迁移量发生了明显改变;微量元素除Sr和Cu外,迁移量变化较小,稀土元素在矿化强的部位亏损,在矿化弱的地带富集。岩体及蚀变带岩石稀土元素球粒陨石标准化配分模式一致,说明岩体与蚀变岩石经历了相同来源流体的交代蚀变,是岩浆流体连续作用的结果。  相似文献   

5.
The Daraloo field is located in the southeast of Iran (Kerman province). It is associated with Oligomiocene diorite/granodiorite to quartz monzonite stocks. Copper mineralization is basically relevant to potassic and phyllic alteration zones. Petrographic and geologic studies imply that mineralization is restricted to two major parts locating in the center and east of district. The larger central mineralization has a northwest–southeast trend perpendicular to the smaller one. Hydrothermal ore fluid formation occurred in relatively deep levels thereafter faulting and fracturing provided appropriate conduits to ascend fluids through shallower depths. Early hydrothermal alteration produced a confined potassic assemblage in the central and eastern parts of the stock. Two main fluid inclusion groups in relationship with alteration ore fluids have been identified. They are liquid-rich inclusions containing solid phases, with high temperatures (257°C to 554°C) and high salinities (31 to 67 wt.% NaCl equiv.), and vapor-rich inclusions with high temperatures and low salinities without any solid phases. These magmatic source fluids are responsible for boiling and also potassic and phyllic alteration zone. They also resulted in the formation of quartz groups I and II veins and chalcopyrite deposition. Propylitic alteration is attributed to a Ca-rich meteoric fluid. Inclusions originated from this fluid are liquid-rich having low temperatures (161°C to 269°C) and low salinities (1 to 13 wt.% NaCl). Mixing descending meteoric water with magmatic fluids reduces considerably the salinity of magmatic fluid. Mixing is also the impetus of leaching copper from potassic to the phyllic zone. It is possible to conclude that all these procedures are controlled by the main faults of district having NW–SE trend. Two fundamental events affecting the mineralization are cooling ore-bearing fluids and magnetite (±pyrite) emplacement. The latter one is formed in potassic and phyllic alteration zone in which copper-bearing fluids have interaction with magnetite minerals and so chalcopyrite minerals have been formed nearby magnetites. Temperature and pressure of hydrothermal fluid differentiation could be applied as a predictive tool to discriminate between barren and productive copper porphyry deposits. A simple comparison of temperature and pressure variations between Daraloo deposit and other copper porphyry deposits located in the same belt of Iran (Sahand-Bazman belt) illuminates that Daraloo system has high range of pressure implying deeper exsolution of hydrothermal fluid. On the other hand, economic mineralization has direct relationship with temperature range of orthomagmatic fluids so that if a deposit has a wide range of high temperature fluids, it could be inferred as a barren deposit. In conclusion, it could be inferred that Daraloo district can be categorized as a sub-economic porphyry deposit. On the other hand, restricted formation of chalcopyrite and the other copper-bearing minerals besides large amounts of magnetite and pyrite can approve obviously the low grade of mineralization in Daraloo district.  相似文献   

6.
刘鹤 《地质与勘探》2013,49(4):654-664
内蒙古陈台屯铜矿区是一个以斑岩型铜矿为主要目标的勘查区,位于大兴安岭中段,成矿时代为中侏罗世。目前在矿区发现了斑岩型铜矿化和脉状铜矿化两种矿化类型。斑岩型铜矿化主要形成于陈台斑岩体顶部与二叠系大石寨组安山质火山岩的内、外接触带上,围岩蚀变作用强烈,并具有明显的分带特征,自下而上、由内到外可分为钾化带、黄铁-绢英岩化带、泥化带和青磐岩化带,斑岩型铜矿化主要集中于黄铁-绢英岩化带中。脉状铜矿主要充填于万宝组沉积地层和大石寨组火山岩的裂隙中,围岩蚀变仅发育黄铁-绢英岩化和弱青磐岩化。通过对矿区开展激电中梯测量和CSAMT电阻率测深并施工钻探验证,发现高极化率异常与斑岩型铜矿体和脉状铜矿体均具有良好的空间对应关系,可以作为下一步铜矿勘查的重要目标;低电阻率异常既可以由斑岩型铜矿化作用所引起,又可以由孔隙度较高的万宝组砂岩所引起,因此首先需要区分异常形成的原因,进而用低电阻率异常指导找矿,但高电阻率异常通常代表了致密的、不含矿的地质体。  相似文献   

7.
五子骑龙矿床——被改造的斑岩铜矿上部带   总被引:8,自引:1,他引:8  
五子骑龙矿床产于紫金山矿田的一个早白垩世火山管道旁侧。火山管道中充填的英安斑岩向深部逐渐相变为花岗闪长斑岩。由于后期断裂的破坏,该花岗闪长斑岩及其矿化系统被上冲到与五子骑龙矿床相邻的中寮矿床近地表位置,从而形成斑岩型铜矿床-中寮矿床。五子骑龙矿床中,环绕英安斑岩发育明矾石化、迪开石化、埃洛石化和红柱石化蚀变,这些蚀变是改造并叠加早期绢英岩化蚀变的结果。其铜矿石中的铜蓝、硫砷铜矿和蓝辉铜矿,也经常交  相似文献   

8.
红豆山铜矿床是南澜沧江带新发现的矿床之一。通过野外地质工作和系统构造—|蚀变岩相填图,发现该矿床蚀变类型主要以钾长石化、硅化、绿泥石化、绿帘石化为主,其次为碳酸盐化、绢云母化、黄铁矿化等,且在空间上呈现一定规律,各蚀变带具有明显的叠加现象。依据区内岩石蚀变矿物组合等特点,自断裂带→上盘围岩,共出现4个典型蚀变带,依次为碎裂岩化带→长英岩化—碳酸盐化—绢云母化带→硅化—绿泥石化—绿帘石化带→弱长英岩化安山岩带。矿(化)体主要分布在长英岩化、碳酸盐化、绢云母化带和硅化、绿泥石化、绿帘石化带。由斑岩脉中心至边缘发育钾化带→硅化带→青磐岩化带→绢云母化带,斑岩旁侧围岩中发育放射状石英—方解石—黄铜矿脉。  相似文献   

9.
土屋斑岩铜矿床位于新疆东天山晚古生代大南湖-头苏泉岛弧中.矿区出露地层为石炭系企鹅山群火山-沉积岩.文章提出矿区出露的火山-沉积岩以及浅成侵入岩为一火山-侵入杂岩体,发育2个旋回4个岩相:第一旋回包括溢流相玄武岩和安山岩、爆发相集块角砾熔岩和爆发-沉积相凝灰岩;第二旋回包括次火山相闪长玢岩和玄武玢岩.斜长花岗斑岩侵入到火山机构断裂系中.矿体赋存于斜长花岗斑岩和闪长玢岩中.斜长花岗斑岩为成矿斑岩,次火山岩相闪长玢岩为容矿岩石,火山岩为围岩.土屋斑岩铜矿床可分为前成矿期和主成矿期.前成矿期形成于火山活动的晚期,发育青磐岩化;主成矿期形成于斜长花岗斑岩侵位时期,发育钾硅酸盐蚀变、绿泥石-绢云母蚀变和黄铁绢英岩化蚀变及与之有关的矿化,形成了土屋斑岩型矿化的主体.矿化阶段包括钾硅酸盐阶段、绿泥石-绢云母阶段和黄铁绢英岩化阶段等.  相似文献   

10.
The Palaeoproterozoic Eastern Creek Volcanics are a series of copper-rich tholeiitic basalts which occur adjacent to the giant sediment-hosted Mount Isa copper deposit in Queensland, Australia. The volcanic rocks are often cited as the source of metals for the deposit. New laser ablation ICP-MS analyses of iron–titanium oxides from the basalts provide evidence for the local mobilisation of copper during regional greenschist facies metamorphism. This interpretation is based on the observation that copper-bearing magmatic titanomagnetite was destabilised during greenschist facies metamorphism, and the new magnetite which crystallised was copper poor. Petrological observations, regional geochemical signatures and geochemical modelling suggest that the mobilised copper was concentrated in syn-metamorphic epidote-rich alteration zones, creating a pre-concentration of copper before the main mineralisation event at Mount Isa. Geochemical modelling demonstrates this process is enhanced by the addition of CO2 from adjacent carbonate-rich sediments during metamorphic devolatilisation. Regional geochemical data illustrate elevated copper concentrations in epidote-rich zones (high CaO), but where these zones are overprinted by potassic alteration (high K2O), copper is depleted. A two-stage model is proposed whereby after metamorphic copper enrichment in epidote–titanite alteration zones, an oxidised potassium-rich fluid leached copper from the epidote-altered metabasalts and deposited it in the overlying sedimentary rocks to form the Mount Isa copper deposit. This ore-forming fluid is expressed regionally as potassium feldspar-rich veins and locally as biotite-rich alteration, which formed around major fluid conduits between the metabasalt metal source rocks and the overlying deposit host sequence. This model is consistent with the remobilisation of copper from mafic source rocks, as has been found at other world-class copper deposits.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

11.
安徽庐枞沙溪斑岩铜矿蚀变及矿化特征研究   总被引:13,自引:9,他引:4  
袁峰  周涛发  王世伟  范裕  汤诚  张千明  俞沧海  石诚 《岩石学报》2012,28(10):3099-3112
沙溪斑岩铜矿是长江中下游成矿带中部庐枞火山岩盆地外围的一个大型铜矿床.本文在前人工作基础上,基于详细的野外观察和系统的岩相学、矿相学工作,详细研究了矿床的蚀变特征及分带.结果表明,矿床的蚀变类型有钾硅酸盐化、青磐岩化、长石分解蚀变和高岭土化,从深到浅依次发育有钾硅酸盐化、长石分解蚀变叠加钾硅酸盐化、长石分解蚀变和高岭土化等蚀变.确定了矿化特征、矿物生成顺序并划分了成矿阶段,即:钾硅酸盐阶段、石英硫化物阶段和石英碳酸盐阶段,其中,石英硫化物阶段又可进一步分为石英硫化物亚阶段和绿帘石-绿泥石亚阶段.基于蚀变及矿化特征认为,沙溪铜矿床的矿化始于钾硅酸盐阶段的晚期,石英硫化物亚阶段是黄铜矿主要的沉淀阶段,石英碳酸盐阶段也对成矿贡献了部分铜质.与世界上不同构造环境的典型斑岩铜矿床对比认为,沙溪矿床总体上与这些矿床的蚀变、矿化特征类似;与陆缘弧、岛弧、陆内碰撞造山后伸展环境矿床在矿体产出位置、蚀变分带方面相似;而由于围岩性质的差异,与板内环境的德兴矿床在矿体位置、蚀变分带方面存在差异,但是二者在脉体类型特别是与矿化关系密切的脉体特征上较为一致.因此,对于斑岩型矿床而言,构造背景可能控制了其岩浆的形成、演化以及含矿性,而岩浆岩最终定位的深度、围岩等条件则控制了其蚀变、矿化特征.  相似文献   

12.
The alkalic porphyry gold–copper deposits of the Cadia district occur in the eastern Lachlan Fold Belt of New South Wales, Australia. The district comprises four porphyry deposits (Ridgeway, Cadia Quarry, Cadia Hill, and Cadia East) and two iron–copper–gold skarn deposits (Big Cadia and Little Cadia). Almost 1,000 tonnes of contained gold and more than four million tonnes of copper have been discovered in these systems, making Cadia the world’s largest known alkalic porphyry district, in terms of contained gold. Porphyry gold–copper ore at Cadia is associated with quartz monzonite intrusive complexes, and is hosted by central stockwork and sheeted quartz–sulfide–(carbonate) vein systems. The Cadia porphyry deposits are characterized by cores of potassic and/or calc–potassic alteration assemblages, and peripheral halos of propylitic alteration, with late-stage phyllic alteration mostly restricted to fault zones. Hematite dusting is an important component of the propylitic alteration assemblage, and has produced a distinctive reddening of feldspar minerals in the volcanic wall rocks around the mineralized centers. Sulfide mineralization is strongly zoned at Ridgeway and Cadia East, with bornite-rich cores surrounded by chalcopyrite-rich halos and peripheral zones of pyrite mineralization. The Cadia Hill and Cadia Quarry deposits have chalcopyrite-rich cores and pyrite-rich halos, and Cadia Hill contains a high-level bornite-rich zone. Distinctive sulfur isotopic zonation patterns have been identified at Ridgeway, Cadia Hill, and Cadia East. The deposit cores are characterized by low δ34Ssulfide values (−10 to −4‰), consistent with sulfide precipitation from an oxidized (sulfate-predominant) magmatic fluid at 450 to 400°C. Pyrite grains that occur in the propylitic alteration halos typically have δ34Ssulfide values near 0‰. There is a gradual increase in δ34Ssulfide values outwards from the deposit cores through the propylitic halos. Water–rock interaction during propylitic alteration caused magmatic sulfate reduction and concomitant oxidation of ferrous iron-bearing minerals, resulting in enrichment of 34S in pyrite and also producing the distinctive reddened, hematite-rich alteration halos to the Cadia deposits. These results show that sulfur isotope analyses have potential applications in the exploration of alkalic porphyry-style deposits, with zones of depleted δ34Ssulfide values most prospective for high-grade mineralization.  相似文献   

13.
Dalli Cu–Au porphyry deposit was occurred in the igneous diorite, quartz diorite porphyry (QDP), and volcanic rocks such as porphyritic amphibole andesite, andesite (AND), dacite, and pyroclastics during the late Miocene to Pliocene. Regolith investigations and Advanced Spaceborne Thermal Emission and Reflection Radiometer images were used to identify the anomalous areas. According to lithogeochemical survey (from boreholes and trenches) in Northern Dalli Cu–Au porphyry, the potassic, chlorite, sericite, propylitic, and argillic alterations have been found and mineralization was basically associated with potassic and quartz–sericite alterations. The alteration is dominantly moderate quartz chlorite?±?sericite magnetite with 1–10 mm wide quartz?±?magnetite veinlets. The elevated copper–gold values are correlated with density of stockworking and mineralization. The intensity of the mineralization is high in the contact of QDP and AND with increases in pyrite and chalcopyrite values. Malachite, native Cu, and bornite were used to identify supergene, transition, and hypogene zone. In addition, molybdenum increased near to the center of granodiorite intrusion. And besides, from depth to surface in DDH03 and wall rock to mineralization zones, a sequence of Mo→Cu (Au)→Au (Cu) was recorded and the mineralization temperature cooled down (from high to low). The alteration is characterized by specific pattern and structure in Dalli Cu–Au porphyry deposit. The alteration model was followed from the modified Lowell and Gilbert model. The porphyry is stockworked by quartz veins and by quartz magnetite veins. Vein distribution and ore mineralogy vary between the different alteration zones. Due to the formation of an iron cap in the supergene, especially in the southern hills, supergene grade was higher than hypogene zone. Also, hematite, as a dominant Fe oxide in DDH03 borehole with minor limonite, jarosite, and goethite created thickness about 150–270 m in supergene zone; finally, this finding show a possibility of an extensive mineralization.  相似文献   

14.
哈赞布拉克金铜矿位于博罗科努金铜钼铅锌成矿带.矿化产于华力西中期中酸性侵入岩体内及与围岩接触带内,主要蚀变为围岩地层中的角岩化,闪长岩中的钾化、绢云母化、青盤岩化及含矿岩石中的硅化、碳酸盐化等,矿区发现Ⅰ、Ⅱ、Ⅲ号三个矿化带,以Ⅱ号矿化带规模最大,矿床为铜、金共生矿化,矿化成因类型为石英脉型、矽卡岩型、斑岩型,以石英脉型矿化为主,矿化主要受岩浆岩和构造控制,矿床为先期斑岩型矿化,伴矽卡岩型矿化,经后期热液改造叠加的石英脉型矿床.  相似文献   

15.
岛弧环境斑岩铜矿蚀变分带模式已为人们所熟知 ,但碰撞造山环境的斑岩铜矿蚀变分带特征尚不清楚。对此 ,文中以西藏冈底斯斑岩铜矿带为例 ,选择驱龙、冲江、厅宫 3个典型斑岩铜矿 ,对其蚀变系统进行了系统研究。依据蚀变矿物组合可分为 3个蚀变带 ,呈环带状分布。从中心向外依次为钾硅酸盐化带、石英绢云母化带、青磐岩化带。泥化带不太发育 ,通常叠加在其它蚀变带之上。钾硅酸盐化带主要蚀变矿物为钾长石、黑云母、石英、硬石膏 ,伴有大量的黄铜矿与辉钼矿 ,是成矿物质的主要堆积区。石英绢云母化带与钾硅酸盐化带渐变过渡或叠加其上 ,是次于钾硅酸盐化带的储矿部位。蚀变矿物组合为绢云母 +石英 +钾长石 ,金属硫化物有黄铁矿、黄铜矿、辉钼矿、斑铜矿 ,少量的方铅矿、闪锌矿。主要的辉钼矿以石英 +辉钼矿脉的形式出现于本矿带。青磐岩化在斑岩体内不发育 ,矿化极微弱。蚀变岩石组分分析表明 ,岩石蚀变及其分带是岩浆流体 /岩石反应时K ,Na ,Ca ,Mg等组分迁移的结果 ,矿化伴随着蚀变发生。钾硅酸盐化带、石英绢云母化带和青磐岩化带的蚀变岩石与未 (弱 )蚀变斑岩具有一致的稀土配分模式 ,REE含量有规律地变化 ,说明蚀变岩石均经历了源于岩浆的流体的交代 ,不同的蚀变形成于岩浆流体演化的不同阶段。蚀?  相似文献   

16.
从区域尺度和矿床尺度两个方面论述了斑岩铜矿系统的特点.区域尺度上:1)斑岩铜矿多呈矿带或成矿域出现,带内众多斑岩铜矿呈簇或组合呈线状产出,这是构造作用控制下不连续岩株呈线状侵入就位的表现; 2)主要产于俯冲作用形成的岛弧和陆缘环境,构造应力属挤压但与中等拉张作用也有关,最近的研究证实大陆碰撞造山带也是斑岩型矿床产出的重要环境;3)其形成是通过具氧化性,S饱和,富含金属的岩浆熔体侵入所致,岩浆侵入作用为成矿提供了物质来源; 4)围岩的物理性质以及化学组成对矿床的规模、品位以及矿化类型具有极强的控制作用,碳酸盐岩围岩主要赋存近源Cu-Au夕卡岩矿床,少量远程Zn-Pb或Au夕卡岩矿床,在夕卡岩前缘还形成交代型Cu和Zn-Pb-Ag±Au矿床.矿床尺度上:1)含矿斑岩与斑岩型矿床时空相依,成因相联,是斑岩铜矿重要的含矿母岩和金属-S的可能载体;2)火山角砾岩筒在深部与矿化体平行或斜交,其与围岩的接触带,一般也是富硫金成矿带的一部分;3)与矿化有关的斑岩成矿系统内的角砾岩主要有爆发角砾岩、侵入角砾岩、爆发侵入角砾岩、热液角砾岩和热液卵石脉;4)斑岩铜矿系统中的热液蚀变自下而上可分为不含矿的早期钠质-钙质蚀变→含矿的钾化→绿泥石化-绢云母化→绢云母化→高级泥化,热液蚀变互相套合,矿化互相叠加;5)岩帽是斑岩型热液-成矿活动-蚀变体系的重要组成部分,是重要的找矿标志.  相似文献   

17.
Tuwu is the largest porphyry copper deposit discovered in the Eastern Tianshan Mountains, Xinjiang, China. A newly recognized volcanic complex in the Early Carboniferous Qi’eshan Group at Tuwu consists of basalt, andesite, and diorite porphyry. The plagiogranite porphyry was emplaced into this complex at 332.8±2.5 Ma (U–Pb zircon SIMS determination). Whole-rock element geochemistry shows that the volcanic complex and plagiogranite porphyry formed in the same island arc, although the complex was derived by partial melting of the mantle wedge and the plagiogranite porphyry by partial melting of a subducting slab. The diorite and the plagiogranite porphyries have both been subjected to intense hydrothermal alteration and associated mineralization, but the productive porphyry is the plagiogranite porphyry. Three alteration and mineralization stages, including pre-, syn- and post-ore stages, have been recognized. The pre-ore stage formed a barren propylitic alteration which is widespread in the volcanic complex. The syn-ore stage is divided into three sub-stages: Stage 1 is characterized by potassic alteration with chalcopyrite + bornite + chalcocite; Stage 2 is marked by chlorite–sericite–albite alteration with chalcopyrite ± pyrite ± bornite; Stage 3 is represented by phyllic alteration with chalcopyrite + pyrite ± molybdenite. The post-ore stage produced a barren argillic alteration limited to the diorite porphyry. A specific feature of the Tuwu deposit is that the productive porphyry was emplaced into a very mafic package, and reaction of the resulting fluids with the ferrous iron-rich hostrocks was a likely reason that Tuwu is the largest porphyry in the district.  相似文献   

18.
肖娥  马春  顾连兴 《江苏地质》2014,38(2):187-199
安徽池州马头铜钼矿是长江中下游成矿带中安庆—贵池矿集区内一个典型的铜钼矿床。通过野外地质祥查和系统的岩相学、矿相学工作,对该矿床的蚀变特征及分带进行了深入研究。识别出马头铜钼矿的蚀变类型主要有硅化、绢云母化、钾长石化,其次为黏土化、绿泥石化和碳酸盐化等。矿区围岩蚀变在空间上往往重叠,但具有一定的水平及垂向分带特征,自岩体深部至浅部、自内向外总体表现为面型石英钾长石化带、线型石英钾长石化带和石英绢云母化带。矿(化)体以脉状矿化为主,其中分布较广的石英脉带矿化主要产在石英绢云母化带中,以石英细(网)脉为主,受节理和裂隙控制;而品位较富的细脉浸染状矿化则主要产在面型钾长石化带中。通过研究认为,马头铜钼矿在成矿过程的早期阶段,由于高温、富钾和高pH值的热液流体作用,形成大面积的钾长石化,伴生与面型钾长石化有关的细脉、浸染状矿化;热液演化中期阶段,随着温度持续下降、K+活度和流体pH值的降低,形成硅化、绢云母化等蚀变类型,并伴随范围较大的细脉-网脉状矿化;热液演化晚期阶段,主要形成碳酸盐化,而相应的矿化作用不显著。通过与部分典型斑岩型铜钼矿床的对比研究认为,马头铜钼矿在蚀变类型等方面与斑岩型铜钼矿大体相同,可归至斑岩型成矿体系。  相似文献   

19.
The Rosia Poieni deposit is the largest porphyry copper deposit in the Apuseni Mountains, Romania. Hydrothermal alteration and mineralization are related to the Middle Miocene emplacement of a subvolcanic body, the Fundoaia microdiorite. Zonation of the alteration associated with the porphyry copper deposit is recognized from the deep and central part of the porphyritic intrusion towards shallower and outer portions. Four alteration types have been distinguished: potassic, phyllic, advanced argillic, and propylitic. Potassic alteration affects mainly the Fundoaia subvolcanic body. The andesitic host rocks are altered only in the immediate contact zone with the Fundoaia intrusion. Mg-biotite and K-feldspar are the main alteration minerals of the potassic assemblage, accompanied by ubiquitous quartz; chlorite, and anhydrite are also present. Magnetite, pyrite, chalcopyrite and minor bornite, are associated with this alteration. Phyllic alteration has overprinted the margin of the potassic zone, and formed peripheral to it. It is characterized by the replacement of almost all early minerals by abundant quartz, phengite, illite, variable amounts of illite-smectite mixed-layer minerals, minor smectite, and kaolinite. Pyrite is abundant and represents the main sulfide in this alteration zone. Advanced argillic alteration affects the upper part of the volcanic structure. The mineral assemblage comprises alunite, kaolinite, dickite, pyrophyllite, diaspore, aluminium-phosphate-sulphate minerals (woodhouseite-svanbergite series), zunyite, minamyite, pyrite, and enargite (luzonite). Alunite forms well-developed crystals. Veins with enargite (luzonite) and pyrite in a gangue of quartz, pyrophyllite and diaspore, are present within and around the subvolcanic intrusion. This alteration type is partially controlled by fractures. A zonal distribution of alteration minerals is observed from the centre of fractures outwards with: (1) vuggy quartz; (2) quartz + alunite; (3) quartz + kaolinite ± alunite and, in the deeper part of the argillic zone, quartz + pyrophyllite + diaspore; (4) illite + illite-smectite mixed-layer minerals ± kaolinite ± alunite, and e) chlorite + albite + epidote. Propylitic alteration is present distal to all other alteration types and consists of chlorite, epidote, albite, and carbonates. Mineral parageneses, mineral stability fields, and alteration mineral geothermometers indicate that the different alteration assemblages are the result of changes in both fluid composition and temperature of the system. The alteration minerals reflect cooling of the hydrothermal system from >400 °C (biotite), to 300–200 °C (chlorite and illite in veinlets) and to lower temperatures of kaolinite, illite-smectite mixed layers, and smectite crystallization. Hydrothermal alteration started with an extensive potassic zone in the central part of the system that passed laterally to the propylitic zone. It was followed by phyllic overprint of the early-altered rocks. Nearly barren advanced argillic alteration subsequently superimposed the upper levels of the porphyry copper alteration zones. The close spatial association between porphyry mineralization and advanced argillic alteration suggests that they are genetically part of the same magmatic-hydrothermal system that includes a porphyry intrusion at depth and an epithermal environment of the advanced argillic type near the surface.Editorial handling: B. Lehmann  相似文献   

20.
新疆准北地区铜矿床主要类型控矿条件及找矿前景分析   总被引:5,自引:0,他引:5  
准北地区铜矿床已发现有岩浆熔离铜镍硫化物型,海相火山岩型,隐爆角砾岩型和陆相火山岩型,那林卡拉-喀拉通克铜镍矿带受控于海沟岛弧盆地内基性岩带的控制,岩浆分异程度对铜矿形成具有明显的控制作用,海相火山岩铜矿受火山机构制约,常产出于海底火山喷发中心及附近洼地,将准北地区划分冲乎尔-麦兹铜多金属,阿舍勒铜锌,额尔齐斯铜(镍)金-萨吾尔-加波萨尔铜(钼)和谢米斯台-阿尔曼台-北塔山铜等五个具找矿前景的成矿  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号