首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using seismic waveform data recorded at station YK (Yingkou) of Liaoning Telemetry Digital Seismic Network, this paper studied the characteristics of shear-wave splitting before and after the Xiuyan MS5.9 (ML5.3) earthquake in November 29, 1999 with SAM method. The results show that the predominant polarizations of fast shear-waves at YK is in direction of ENE-WSW, consistent with the direction of regional principal compressive stress and also consistent with the direction of the regional tectonic stress field in North China; time-delays increasing before Xiuyan earthquake may shows accumulation of stress before earthquake. The predominant polarizations of fast shear-waves at YK are also related to the spatial distribution of small earthquakes and correlate with the fault strike. The histogram of monthly average polarizations of fast shear-waves shows that polarizations of fast shear-waves also seems to change from two months before the earthquake, but it still needs more data for verification.  相似文献   

2.
The Tianshan Tectonic Belt is an intracontinental orogenic belt formed by continental convergence that has undergone long-term tectonic evolution. The reactivation that began during the Cenozoic Period has led to complex structural changes. The goals of this study are to review the seismic observational data obtained during 2009–2019 in the Xinjiang regional seismic network and analyze the anisotropy of the upper crust in the Tianshan area. Therefore, a shear-wave splitting system was adopted to collect and analyze shear-wave splitting parameters of 33 stations in the study area. The anisotropy of the upper crust of the Tianshan is spatially diverse, and the dominant polarization directions of fast shear-wave reflect the spatial variations of regional tectonic stress. In addition, the time delays of slow waves are proportional to the intensities of anisotropy in the upper crustal medium. The dominant polarization direction of the fast waves in the western segment of the North Tianshan Mountain,northwestern corner of the Tarim Basin, and northeastern edge of Pamir is consistent with the tectonic stress fields in the area. In the northern part of the Keping Block, the dominant polarization directions of the fast waves are consistent with the fault trends;however, they are at a high angle to the dominant directions of the regional tectonic stress field indicating that the anisotropy is affected by the faults in the area. The anisotropy of the eastern segment of the South Tianshan Mountains and the surrounding area of Urumqi are affected by the local stress field and fault structure. The polarization directions at some of the stations are subparallel to the directions of the regional principal stress. However, for other stations, the polarization directions are aligned with the neighboring faults. The polarization directions of the fast waves in most of the study area are consistent with the local tectonic stress fields. Thus, stress compression phenomena such as the Tarim Basin being thrusted and subducted between the Tianshan crust and the upper mantle due to the far field effects of the convergence between the Indian and Siberian plates are evident.Furthermore, the zoning of the time delays is distinct, and the time delays share an increasing trend from east to west in the North Tianshan and South Tianshan Mountain ranges. These results are consistent with the north-south convergence deformations across the Tianshan Mountains, where the deformation rate increased from east to west. The average values of time delays in northeastern Pamir are significantly higher than that in the other areas due to the occurrence of the most intensive tectonic movements suggesting that the anisotropy of the zone is significantly stronger than that of the other zones in the Tianshan Tectonic Belt. We successfully deciphered the seismic anisotropy in the upper crust and provided a comprehensive and systematic understanding of the dynamic mechanisms of the Tianshan Tectonic Belt.  相似文献   

3.
Variations of shear wave splitting in the 2008 Wenchuan earthquake region   总被引:4,自引:0,他引:4  
Through the analysis of S-wave particle motion of local events in the shear wave window, the polariza-tion directions of the faster shear wave and the delay times between the faster and the slower shear waves were derived from seismic recordings at the stations near the fault zones. The shear wave split-ting results of seven stations in the area of Longmenshan fault zone reveal spatial variation of the po-larization directions of the fast shear wave. The directions at stations in the southeastern side of the Longmenshan fault zone (in the Sichuan Basin area) are in the NE direction, whereas the direction at station PWU (in the Plateau), which is in the northwestern side of the faults, is in the EW direction. Systematic changes of the time delays between two split shear waves were also observed. At station L5501 in the southern end of the aftershock zone, the delay times of the slower shear wave decrease systematically after the main shock. After the main shock, the delay times at station PWU were longer than those before the earthquake. Seismic shear wave splitting is caused mostly by stress-aligned microcracks in the rock below the stations. The results demonstrate changes of local stress field dur-ing the main-shock and the aftershocks. The stress in the southern part of Wenchuan seismogenic zone was released by the main-shock and the aftershocks. The crustal stresses were transferred to the northeastern part of the zone, resulting in stress increase at station PWU after the main-shock.  相似文献   

4.
Using seismic data of the aftershocks sequence of the April 20, 2013 Lushan earthquake recorded by seismic temporary and permanent stations in the source region, with the visual inspection of particle motion diagrams, this paper preliminarily contains the polarization directions of fast shear wave and the time-delays of split shear waves at every station, and analyzes the crustal anisotropic characteristics in the source region. In the study area, the polarization direc- tions at stations BAX, TQU, L 132, L 133, L 134, and L 135 are northeast, which is consistent with the strike of Dachuan- Shuangshi fault. There are two polarization directions at MDS and L131, which are northeast and southeast. The scatter of polarization directions suggests the complex stress field around these two stations where two faults intersect. For the normalized time-delays at every station, the range is 1.02-8.64 ms/km. The largest time-delay is from L134 which is closest to the mainshock, and the smallest one is from L133. The variations in time-delays show the decreasing at stations BAX, L134, and L135 because of the stress-relaxation after earthquake.  相似文献   

5.
Through the accurate determination of hypocenter location,the measurement of the main focal mechanism solutions and the analyses of time dependent processes for Sichuan Mianzhu earthquake sequence with Ms=5.0 occurred along the middle segment of Longmenshan fault zone on November 30,1999,the distribution of focal depth section,the stress relase and seismicity features are given to reveal the earthquake-geneating structure of the earthquake sequence.The obtained results show the activity features for this sequence as follows:(1) There is no obvious foreshock,the accumulated strain energy releases in nearly pulse way,fluctuation of the seismic activity level is not quite evident during the duration of the sequence,and the statistical relation between the large events and the small events is less compatible with the traditional G-R estimation;(2) The epicenters of the earthquake sequence are not distributed on the main Longmenshan piedmont faults emerging out ground,but near the hidden Longmenshan piedmont faults.The direction of epicenter distribution is not very coincident with the fault strikes.The microscopic epicenters are relatively far from the macroscopic epicenters,The focal depths range from 5km to 16km;(3) The fractures of focal fault plane with the NE strike appear out the strike-slip displacement with a few overthrust components under the major principal compressive stress of NNE direction.From these,we consider it should be paid more attentions to the underground hidden faults near the ground fault zone on a large scale for their generating earthquake risk.  相似文献   

6.
Shear-wave splitting in Tangshan region is studied by using digital seismic data.Analyzing 3-component digital seismic data in Tangshan strong ground motion array,it is found that almost all earthquakes occurred during 1982 to 1984 have significant shear-wave splitting.The polarization directions of faster shear waves in 7 stations are near EW,which are consistent with the axis of maximum principal compressive stress obtained from earthquake fault mechanisms and geodetic surveys.The crack densities of the 7 stations are roughly estimated,0.019 for TS01,TS02 and TS15,0.015 for TS03,TS07 and TS18 and 0.024 for TS19,by using the average time delay of slow shear-wave at the 7 stations.  相似文献   

7.
After Ms=6.5 Yao'an earthquake on January 15, 2000, a large amount of aftershock waveforms were recorded by the Near Source Digital Seismic Network (NSSN) installed by Earthquake Administration of Yunnan Province in the aftershock region. It provides profuse data to systematically analyze the features of Yao'an earthquake. The crustal anisotropy is realized by shear wave splitting propagating in the upper crust. Based on the accurate aftershock relocations, the shear wave splitting parameters are determined with the cross-correlation method, and the results of different stations and regions are discussed in this paper. These conclusions are obtained as follows: firstly, the average fast directions of aftershock region are controlled by the regional stress field and parallel to the maximum horizontal compressive stress direction; secondly, the average fast directions of disparate stations and regions are different and vary with the structural settings and regional stress fields; finally, delay time value is affected by all sorts of factors, which is affinitive with the shear wave propagating medium, especially.  相似文献   

8.
Shear-wave splitting parameters of 24 stations in southeastern Capital area of North China (38.5°N~39.85°N, 115.5°E ~118.5°E) are obtained with systematic analysis method of shear-wave splitting (SAM) based on the data recorded by Capital Area Seismograph Network (CASN) from 2002 to 2005. The results show that the average polarization of fast shear-wave in southeastern Capital area is consistent with regional maximum horizontal prin- cipal compressive stress in the area, and is also consistent with maximum horizontal principal compressive strain from GPS in North China. The average shear-wave splitting in southeastern Capital area (in basin) is different from that in northwestern Capital area where uplifts and basin exist, which means that tectonics can be related to shear-wave splitting results. Research also shows that the distribution of faults around stations can obviously affect the shear-wave splitting results, and complicated distribution of faults can result in much more scatter of shear-wave splitting. Moreover, in the north and south of the studied area (southeastern Capital area), the polariza- tions of fast shear-wave are not very consistent, which may be related to differences in tectonic and stress for the two areas.  相似文献   

9.
Based on the horizontal deformation field and the strain field derived from the GPS data over the period of 1999~2001 in the Yunnan area, the characteristics of deformation and strain in the northern part of Yunnan Province have been studied. The results indicate that the central part of the studied area is rather stable with little crustal displacement, while the western and eastern parts are active with larger displacement. The strain field reveals that the orientations of the principal compressive strain axis of the crust and the sub-blocks in the area are NW-SE, while the orientations of the principal tensile strain axis is NE-SW. In the studied area, the tensile strain is predominatly in the northern part and the compressive strain is predominatly in the central and southern parts. The stretching direction of the shear-strain contour is basically consistent with the strike of the active fault. The strain and stress fields of the fault activity are related to the structure where the fault is located, while the activity properties of the faults are different.  相似文献   

10.
Based on the polarization analysis of teleseismic SKS waveform data recorded at 49 seismic stations in Capital Area Seismograph Network,the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by using the grid searching method of minimum transverse energy and the stacking analysis method,and then we acquired the image of upper mantle anisotropy in Capital area.In the study area,the fast-wave polarization direction is basically WNW-ESE,and the delay time falls into the interval from 0.56 s to 1.56 s.The results imply that the upper mantle anisotropy in Capital area is mainly caused by the subduc-tion of the Pacific plate to Eurasian plate.The subduction has resulted in the asthenospheric material deformation in Capital area,and made the alignment of upper mantle peridotite lattice parallel to the deformation direction.And the collision between the Indian and Eurasian plates made the crust of western China thickening and uplifting and material eastwards extruding,and then caused the upper mantle flow eastwards,and made the upper mantle de-formation direction parallel to the fast-wave direction.The deformation model of the crust and upper mantle is possibly vertically coherent deformation by comparing the fast-wave polarization direction with the direction of lithospheric extension and the GPS velocity direction.  相似文献   

11.
叙述了在FreeBSD环境下构建基于PPTP的VPN网关的过程和技术,分析了基本概念、实现方式以及在江西省地震信息网的实际应用等。  相似文献   

12.
山西大同数字遥测地震台网记录的震相特征   总被引:1,自引:0,他引:1  
从地球及地壳的分层结构出发,使用较成熟的理论,从地震波传播的基本原理入手,结合多年的震相观察分析工作实践,选取了山西大同数字遥测地震台网近年来的一些典型震相进行了分析,得出本台网记录到震中距小于100km的地方震震相有Pg,P11,Sg,S11震中距在100km~500km的近震震相有Pn,Pg,P11,Sn,Sg,S11对比分析了在本台网内及周边地区发生的爆破与天然地震在震相上的差异性,并对其特征作了较详细的描述。  相似文献   

13.
对兰州地震研究所的三段历史作回顾,分别为国家地震局、中国地震局兰州地震研究所的体制沿革变迁,中国科学院地球物理研究所;中国科学院兰州地球物理研究所观象台早期创建;兰州地震研究所硕士点早期阶段。  相似文献   

14.
利用山东数字地震台网的实时记录波形资料,采用在频率域积分方法,计算出各台站背景噪声的位移值。然后进行统计分析,得出了山东地区背景噪声位移值的空间分布和时间变化特征:台站背景噪声幅值与不同地区地质环境、岩性密切相关,位于第四系黄土覆盖层较厚的鲁西聊城、菏泽地区,鲁西北德州地区和鲁北东营、滨州地区各子台的背景噪声位移值较大,鲁中、鲁南山区和胶东半岛地区的基岩台站背景噪声位移值较小;同时,白天噪声值大于夜间噪声值,但深井观测台站的背景噪声值相对稳定。此项研究为绘制台网监测能力图提供基础数据,并为计算各台站的场地响应及震级修正值等测震学研究提供基础资料,促进台网的改建和发展。  相似文献   

15.
王洪体  崔仁胜  王宏远  叶鹏  李丽娟 《地震》2020,40(3):153-166
本文在理论上研究了对齐误差对测试地震计自噪声的影响。指出对齐误差影响到2台仪器记录间的计算互功率谱密度, 进而影响到被测仪器记录间相干函数计算, 最终影响到被测仪器的自噪声计算。发现当存在对齐误差时, 在信噪比较高频段计算得到的自噪声水平比仪器的实际自噪声水平要高, 在一般的实际测试中可能高20 dB以上。为了消除对齐误差对自噪声测试的影响, 提出通过投影逆变换把观测记录变换到标准坐标系下, 再用变换后的观测记录来计算地震计自噪声。给出了基于以上思路和传感参数对比测试方法的地震计自噪声计算处理流程, 合成数据、 实际测试数据的处理检验计算结果表明, 本文方法可以有效克服地震计自噪声测试中对齐误差的影响。  相似文献   

16.
采集夏县中心地震台温泉水及周边水点样品进行水化学组分特征分析。利用矩形图、Na-K-Mg三角图等方法,初步分析温泉水的水质类型、水-岩平衡状态、热储温度以及循环深度等,并结合氢氧同位素组成特征,初步分析温泉水补给来源。研究表明,夏县中心地震台温泉水化类型属于Na-Cl·SO4型,水-岩反应属于部分成熟水,热储温度为148.8℃,循环深度为3.91 km,补给源主要为大气降水,温泉为断裂型温泉。以上结果可为该台流体异常分析提供基础研究资料,为夏县地区水化研究奠定基础。  相似文献   

17.
萧山-球川断裂是浙江地区1条大规模的北东向断裂,在该断裂附近曾发生过多次破坏性地震。本文通过地质调查、电法勘探和探槽开挖等方法,对萧山-球川断裂富阳—建德段第四纪活动性进行了研究。萧山-球川断裂富阳—建德段的遥感影像线性特征清楚,对地貌的控制作用较为明显,对山前的第四系发育有明显影响。通过对断裂露头剖面的分析,认为萧山-球川断裂富阳—建德段活动性质以走滑兼具逆冲为主。通过本次开挖的富阳峙山村探槽,结合ESR年龄测定,判定该断裂在第四纪早、中期有过活动,但未断错上覆中更新统上部地层,其最新活动时代为早、中更新世。  相似文献   

18.
在土-结构的动力相互作用简化分析中,常采用双自由度集中参数模型简化土层.这种模型适合各向同性的单一土层,而实际工程场地的地基土多是各向异性的成层土层.为了将这一模型应用于此类土层,本文根据实际地震动记录,提出了一种变阻尼最小二乘反分析方法,可用来识别模型中的各个参数值.文中提出的方法具有适用范围广、计算精度较高的优点,并已通过编制FORTRAN程序加以实施和应用.  相似文献   

19.
为解决地震台光记录倾斜仪灯光系统故障率高的问题 ,研制了一种时号·光源灯控器。采用了数字钟报时及定闹信号对直接延时时号灯进行控制的措施 ,使仪器的无故障运行期及蓄电池的使用寿命得以延长 ,明显提高了观测质量。  相似文献   

20.
裂隙岩体渗透性空间分布的指示克里格估值   总被引:2,自引:2,他引:2       下载免费PDF全文
本文较详细介绍了指示克立格估值的基本方法和原理,以指示变异函数为基本工具分析了向家坝坝址区裂隙岩体渗透性空间分布的结构特征,表明该址区裂隙岩体渗透性存在明显的各向异性特征;在此基础上用指示克立格法对未采样点处进行估值,估值结果显示坝址区裂隙岩体渗透性存在明显的壳状渗透结构特征.通过这一实际应用,表明指示克立格法可以较好地描述裂隙岩体渗透性的空间分布规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号