首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shennan  Ian  Tooley  Michael  Green  Frances  Innes  Jim  Kennington  Kevin  Lloyd  Jeremy  Rutherford  Mairead 《Geologie en Mijnbouw》1998,77(3-4):247-262
Analyses of geomorphologically contrasting sites in Morar, NW Scotland, describe the forcing mechanisms of coastal change. Isolation basins (i.e. basins behind rock sills and now isolated from the sea following isostatic uplift) accumulated continuous marine and freshwater sediments from c.12 to 2 ka BP. Raised dune, marsh and wetland sites register breaching, migration and stability of dunes from c. 9 to 2 ka BP. High-resolution methods designed to address issues of macroscale and microscale sea-level changes and patterns of storminess include 1-mm sampling for pollen, dinocyst and diatom analyses, infra-red photography, X-ray photography and thin-section analysis. The data enhance the record of relative sea-level change for the area. Major phases of landward migration of the coast occurred during the period of low sea-level rise in the mid-Holocene as the rate of rise decreased from c. 3 to < 1 mm/year. Relative sea-level change controls the broad pattern of coastal evolution at each site; local site-specific factors contribute to short-term process change. There is no record of extreme events such as tsunami. Within a system of dynamic metastable equilibrium, the Holocene records show that site-specific factors determine the exact timing of system breakdown, e.g. dune breaching, superimposed on regional sea-level rise. The global average sea-level rise of 3 to 6 mm/yr by AD 2050 predicted by IPCC would only partly be offset in the Morar area by isostatic uplift of about 1 mm/yr. A change from relative sea-level fall to sea-level rise, in areas where the regional rate of uplift no longer offsets global processes, is a critical factor in the management of coastal resources.  相似文献   

2.
The Lower Tagus Valley in Portugal contains a well-developed valley-fill succession covering the complete Late Pleistocene and Holocene periods. As large-scale stratigraphic and chronologic frameworks of the Lower Tagus Valley are not yet available, this paper describes facies, facies distribution, and sedimentary architecture of the late Quaternary valley fill. Twenty four radiocarbon ages provide a detailed chronological framework. Local factors affected the nature and architecture of the incised valley-fill succession. The valley is confined by pre-Holocene deposits and is connected with a narrow continental shelf. This configuration facilitated deep incision, which prevented large-scale marine flooding and erosion. Consequently a thick lowstand systems tract has been preserved. The unusually thick lowstand systems tract was probably formed in a previously (30,000–20,000 cal BP) incised narrow valley, when relative sea-level fall was maximal. The lowstand deposits were preserved due to subsequent rapid early Holocene relative sea-level rise and transgression, when tidal and marine environments migrated inland (transgressive systems tract). A constant sea level in the middle to late Holocene, and continuous fluvial sediment supply, caused rapid bayhead delta progradation (highstand systems tract). This study shows that the late Quaternary evolution of the Lower Tagus Valley is determined by a narrow continental shelf and deep glacial incision, rapid post-glacial relative sea-level rise, a wave-protected setting, and large fluvial sediment supply.  相似文献   

3.
Marine sediments from river sections in the Mezen River drainage, northwest Russia, have been analysed for dinoflagellate cysts, foraminifers and molluscs. The sediments were dated by pollen analysis and by reference to the local sea-level history, and are Late Saalian to late Eemian (c. 133 to 119.5 kyr in age). The Late Saalian deglaciation was characterized by Arctic conditions, but a few centuries into the Eemian the Gulf Stream system carried warm Atlantic water into the region. At 129.8 kyr BP there was a marked increase in the influx of Atlantic water, and the advection of warm Atlantic water was stronger and probably penetrated further eastwards than at present. The molluscs, dinoflagellate cysts and foraminifers reflect conditions warmer than present and that the optimum temperature occurred at the time of the early Eemian global sea-level rise. Around 128 kyr BP, the eustatic sea-level rise was curbed by isostatic rebound and accompanying regression and constriction of marine passages to the White Sea. Local, low-saline, stratified basins developed and characterized the next five to six millennia.  相似文献   

4.
The Middle Triassic–Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short period of rising sea-level with a relative increase in clastic supply. The Middle-Upper Jurassic sequence is represented by cycles of cross-bedded sandstone topped with thin mudstone that accumulated by northerly flowing braided-streams accompanying regional uplift of the Arabo–Nubian shield. It is succeeded by another regressive fluvial sequence of Early Cretaceous age due to a major eustatic sea-level fall. The Lower Cretaceous sequence is dominated by sandy braided-river deposits with minor overbank fines and basal debris flow conglomerate.  相似文献   

5.
The lower-middle Oxfordian Jakobsstigen Formation, Wollaston Forland, northeast Greenland, consists mainly of stacked coarsening-upward successions of offshore to shoreface heteroliths, sandstone and rare foreshore sandstones. The units are separated by thin, laterally extensive sheets of terrigenous carbonaceous mudstones, which have been subjected to organic petrographic and geochemical studies. The mudstones are thermally immature, with maturities corresponding to R0 in the range 0.35–0.50%. The mudstones contain very high proportions of allochthonous inertinite, subordinate huminite, char and negligible proportions of liptinite. Inertinite reflectance distributions are markedly bimodal, with maxima at approximately 1.73 and 4.91% Rm. Both pyrolysis yields and solvent extract yields are low. The distributions of n-alkanes are markedly light-end skewed and show a pronounced predominance of even-numbered compounds in the lower carbon number range. Biomarker-distributions feature a dominance of C29-steranes, slight enhancement of extended hopanes and αββ-steranes, low proportion of tricyclic triterpanes and very low hopane/sterane ratios. Sedimentological, organic petrographical and geochemical evidence suggests that the regular alternation between marine and terrestrial depositional environments during deposition of the Jakobsstigen Formation was related to low-amplitude, high-frequency changes in relative sea-level and local climate. The mudstones were deposited during early rise of relative sea-level in shallow, flat-bottomed lakes or lagoons on a broad coastal plain. The lakes acted as traps for fine elastic sediment and for predominantly windborne inertinite, generated by wildfires in the hinterland. High rates of evaporation rendered the lakes mildly saline, hampering their colonization by vegetation other than cyanobacteria and halophilic microorganisms. Similarly, saline porewaters excluded higher plant vegetation from emergent areas. Upon continued rise of the relative sea-level, the lakes were gradually flooded and their deposits became covered by sandy shallow marine sediments. The larger areas covered by shallow marine waters during periods of high relative sea-level led to a more humid local climate and to lower frequency of wildfires. During falling relative sea-level, the marine deposits were eroded and partially removed and the cycle subsequently repeated upon renewed rise in relative sea-level. Hence, minor changes in relative sea-level gave rise to the regular alternation of two vastly different depositional environments, as well as to marked variations in local climate.  相似文献   

6.
To elucidate the signature of isostatic and eustatic signals during a deglaciation period in pre‐Pleistocene times is made difficult because very little dating can be done, and also because glacial erosion surfaces, subaerial unconformities and subsequent regressive or transgressive marine ravinement surfaces tend to amalgamate or erode the deglacial deposits. How and in what way can the rebound be interpreted from the stratigraphic record? This study proposes to examine deglacial deposits from Late‐Ordovician to Silurian outcrops at the Algeria–Libya border, in order to define the glacio–isostatic rebound and relative sea‐level changes during a deglaciation period. The studied succession developed at the edge and over a positive palaeo‐relief inherited from a prograding proglacial delta that forms a depocentre of glaciogenic deposits. The succession is divided into five subzones, which depend on the topography of this depocentre. Six facies associations were determined: restricted marine (Facies Association 1); tidal channels (Facies Association 2); tidal sand dunes (Facies Association 3); foreshore to upper shoreface (Facies Association 4); lower shoreface (Facies Association 5); and offshore shales (Facies Association 6). Stratigraphic correlations over the subzones support the understanding of the depositional chronology and associated sea‐level changes. Deepest marine domains record a forced regression of 40 m of sea‐level fall resulting from an uplift caused by a glacio‐isostatic rebound that outpaces the early transgression. The rebound is interpreted to result in a multi‐type surface, which is interpreted as a regressive surface of marine erosion in initially marine domains and as a subaerial unconformity surface in an initially subaerial domain. The transgressive deposits have developed above this surface, during the progressive flooding of the palaeo‐relief. Sedimentology and high‐resolution sequence stratigraphy allowed the delineation of a deglacial sequence and associated sea‐level changes curve for the studied succession. Estimates suggest a relatively short (<10 kyr) duration for the glacio‐isostatic uplift and a subsequent longer duration transgression (4 to 5 Myr).  相似文献   

7.
The Lower Jurassic Mashabba Formation crops out in the core of the doubly plunging Al-Maghara anticline, North Sinai, Egypt. It represents a marine to terrestrial succession deposited within a rift basin associated with the opening of the Neotethys. Despite being one of the best and the only exposed Lower Jurassic strata in Egypt, its sedimentological and sequence stratigraphic framework has not been addressed yet. The formation is subdivided informally into a lower and upper member with different depositional settings and sequence stratigraphic framework. The sedimentary facies of the lower member include shallow-marine, fluvial, tidal flat and incised valley fill deposits. In contrast, the upper member consists of strata with limited lateral extension including fossiliferous lagoonal limestones alternating with burrowed deltaic sandstones. The lower member contains three incomplete sequences (SQ1-SQ3). The depositional framework shows transgressive middle shoreface to offshore transition deposits sharply overlain by forced regressive upper shoreface sandstones (SQ1), lowstand fluvial to transgressive tidal flat and shallow subtidal sandy limestones (SQ2), and lowstand to transgressive incised valley fills and shallow subtidal sandy limestones (SQ3). In contrast, the upper member consists of eight coarsening-up depositional cycles bounded by marine flooding surfaces. The cycles are classified as carbonate-dominated, siliciclastic-dominated, and mixed siliciclastic-carbonate. The strata record rapid changes in accommodation space. The unpredictable facies stacking pattern, the remarkable rapid facies changes, and chaotic stratigraphic architecture suggest an interplay between allogenic and autogenic processes. Particularly syndepositional tectonic pulses and occasional eustatic sea-level changes controlled the rate and trends of accommodation space, the shoreline morphology, the amount and direction of siliciclastic sediment input and rapid switching and abandonment of delta systems.  相似文献   

8.
This study focuses on Miocene sedimentation and stratigraphic evolution in a major transfer zone at the northern tip of the Thal Fault segment, Gulf of Suez. The succession generally shoals upwards from offshore mudstone containing pro-delta turbidites, into conglomeratic delta foresets and topsets, with sandstone-dominated shoreface facies coexisting laterally. Despite this upward shoaling, key stratal surfaces marking abrupt changes in relative sea-level allow the succession to be divided into four stratal units. The stacking pattern of the stratal units suggests an initial relative sea-level rise that generated a major marine flooding surface. A relative sea-level fall followed, resulting in widespread exposure and incision. During the ensuing relative sea-level rise a lowstand coarse-grained delta and coeval shoreface succession prograded several kilometres basinward. The stratigraphic development of the transfer zone delta is in marked contrast to that of aggradationally stacked deltas that occur near the centre of the Baba-Sidri fault segment, further south. At the transfer zone, low rates of subsidence and accommodation development coupled with a high sediment supply derived from a large fault tip drainage catchment have produced a strongly progradational delta subject to marked changes in relative sea-level. In the fault centre location, however, higher rates of accommodation development coupled with lower rates of sediment supply from footwall catchments have produced aggradationally stacked deltas. The results from this study have implications for sequence stratigraphic models and hydrocarbon exploration within extensional basins.  相似文献   

9.
This paper describes the sedimentation style associated with the basal Carboniferous transgression in southern Ireland and the influence which this event had on the palaeogeography of the region. The transgression as marked by the base of the Carboniferous succession is shown to represent one of several genetically related transgressive pulses which commenced during the Late Devonian. At this time an east-west trending graben, the South Munster Basin, developed in southern Ireland. This was initially a non-marine depositional site in which sediment was derived from the north and west. Subsidence and eustatic sea-level rise resulted in a marine transgression which proceeded in a rhythmic style resulting in a number of transgressive-stillstand pulses. The first transgressive pulse (T1) advanced in a westerly direction along the basin axis resulting in the development of an epicontinental-like sea. The shoreline remained essentially static along the northern basin margin initially until a second transgressive pulse (T2) resulted in expansion of the marine area. The latter proceeded by gradual northward erosive advance of a barred coastal area as far as the northern basin margin where the stability of the bounding platform halted its progress. Erosion of the barrier shoreface was insufficient to destroy all the backbarrier lagoonal deposits which are preserved as a thin transgressive diachronous unit which grades northwards to a coastal alluvial plain. Immediately preceding the basal Carboniferous transgression (T3), a shallow, wave-dominated, storm-influenced shelf sea occupied the basinal area. Two sublittoral sand bar complexes developed on the shelf under the influence of shore-parallel current regimes, apparently derived from source areas located on either side of the epicontinental sea The basal Carboniferous transgression took place in two pulses. The first (T3a) resulted in a rapid reduction in sand supply to the shelf and deposition of clay. The barrier shoreline responded by erosively retreating across the lagoon, leaving a transgressive lag in its wake. Its northwards advance was, however, limited due to the relative stability of the northern platform. Sand supply to the shelf was completely terminated in the second pulse (T3b) and the barrier rapidly migrated erosively across the northern platform for a considerable distance such that the coastal plain is overlain by a thin transgressive lag. This transgressive phase was immediately followed by shoreline stillstand and progressive shallowing of the shelf. An open sandy shelf developed on which offshore sand bars accumulated under a storm and wave dominated regime. Clay deposition continued in the deeper part of the basinal area but was eventually terminated as the shelf sands prograded centripetally into the basin. The main factor that controlled the style of the overall transgression was an interplay between eustatic sea level rise and basin subsidence. The rate of relative sea-level rise together with the effect of differential subsidence and fluvial input from the north appear to have diminished with time. The rate at which successive transgressive pulses advanced northwards shows an overall progressive increase.  相似文献   

10.
The Neoproterozoic and Palaeozoic Taoudeni basin forms the flat-lying and unmetamorphosed sedimentary cover of the West African Craton. In the western part of this basin, the Char Group and the lower part of the Atar Group make up a 400-m-thick Neoproterozoic siliciclastic succession which rests on the Palaeoproterozoic metamorphic and granitic basement. Five erosional bounding surfaces of regional extent have been identified in this succession. These surfaces separate five stratigraphic units with lithofacies associations ranging from fluvial to coastal and fluvial-, tide-, or wave-dominated shallow marine deposits. Owing to their regional extent and their position within the succession, the erosive bounding surfaces correspond to relative sea-level falls, and accordingly the five stratigraphic units they bound represent allocyclic transgressive–regressive depositional sequences (S1–S5). Changes in the nature of the deposits forming the transgressive–regressive cycles reflect landward or seaward shifts of the stacked sequences. These successive relative sea-level changes are related to the reactivation of basement faults and tilting during rifting of the Pan-Afro-Brasiliano supercontinent 1000 m.y. ago. The stromatolite bearing carbonate-shale sequences which form the rest of the Atar Group mark the onset of a quiet period of homogeneous subsidence contemporaneous with the Pan-African I oceanization 800–700 m.y. ago.  相似文献   

11.
This paper presents the results from stratigraphic and geomorphologic investigations in the Poolepynten area, Prins Karls Forland, western Svalbard. Field mapping, soil profile development and 14C dating reveal the existence of at least two generations of raised beach deposits. Well-developed raised beaches rise to the Late Weichselian marine limit at 36 m a.s.l. Discontinuous pre-Late Weichselian beach deposits rise from the Late Weichselian marine limit to approximately 65 m a.s.l. Expansion of local glaciers in the area during the Late Weichselian is indicated by a till that locally overlies pre-Late Weichselian raised beach deposits. Stratigraphic data from coastal sections reveal two shallow marine units deposited during part of oxygen isotope stage 5. The two shallow marine units are separated by a subglacially deposited till that indicates an ice advance from Prins Karls Forland into the Forlandsundet basin some time during the latter part of stage 5. Discontinuous glaciofluvial deposits and a cobble-boulder lag could relate to a Late Weichselian local glacial advance across the coastal site. Late Weichselian/early Holocene beach deposits cap the sedimentary succession. Palaeotemperature estimates derived from amino acid ratios in subfossil marine molluscs indicate that the area has not been submerged or covered by warm based glacier ice for significant periods of time during the time interval ca. 70 ka to 10 ka.  相似文献   

12.
Neogene strata of the northern part of the Pegu (Bago) Yoma Range, Central Myanmar, contain a series of shallow marine clastic sediments with stratigraphic ages ranging from the Early to Late Miocene. The studied succession (around 750 m thick) is composed of three major stratigraphic units deposited during a major regression and four major transgressive cycles in the Early to Late Miocene. The transgressive deposits consist of elongate sand-bars and broad sand-sheets that pass headward into mixed-flats of tidal environments. Marine flooding in transgressive deposits is associated with coquina beds and allochthonous coral-bearing sandy limestone bands. Major marine regressions are associated with lowstand progradation of thick estuary point-bars passing up into upper sand-flat sand bodies encased within the tidal flat sequences and lower shoreface deposits with local unconformities. The succession initially formed in a large scale incised-valley system, and was later interrupted by two major marine transgressions in the generally regressive or basinward-stepping stratigraphic sequences. Successive sandbodies were formed during a sea-level lowstand and early stage of the subsequent relative rise of sea level in a tide-dominated estuary system in the eastern part of the Central Myanmar Tertiary Basin during Early to Late Miocene times.  相似文献   

13.
微体化石在海侵研究中的应用与错用   总被引:12,自引:0,他引:12       下载免费PDF全文
汪品先 《第四纪研究》1992,12(4):321-331
微体古生物分析已经证明是沿海平原和陆架海侵研究的最重要手段之一。由于我国第四纪海侵研究大量工作是在海陆过渡相地层中进行,而对于过渡相化石群古生态和埋葬学方面复杂性认识不足,往往会导致微体化石的错用。河口微体化石的溯流搬运,海岸带低pH环境下钙质壳体的溶解作用,氯化钠型盐湖中有孔虫的产出以及河床摆动造成与海侵、海退相似的化石序列,都可能引起微体化石在海侵研究中错误解释和应用。本文通过澳大利亚和中国的实例进行论证,并提出今后研究工作的建议。  相似文献   

14.
The Permo-Carboniferous Talchir Formation in the southeastern part of the Talchir basin is represented by about 260 m thick clastic succession resting on the Precambrian basement rocks of the Eastern Ghats Group. The succession is tentatively subdivided into four lithostratigraphic units, namely A-I, A-II, B and C from base to top. Unit A-I comprises mud-matrixed, very poorly sorted diamictites and interbedded thin sandstone and mudstone yielding dropstones. They reveal deposition in a proglacial lake environment in which ice rafting and suspension sedimentation, as well as meltwater-underflow processes, produced variety of facies. The succession of unit A-II is dominated by pebble to boulder conglomerates and sandstones. They were deposited mostly from various kinds of high-energy sediment gravity flows, both subaerial and subaqueous, and formed steep-faced fan-delta on the margin of the basin. Unit B demonstrates turbidite sedimentation in lake-margin slope and base-of-slope environments, in which a sublacustrine channel-fan system developed. The lake-margin slope was dissected by channels which were accompanied by overbank and levee deposits. Sediments delivered from the mouth of a channel were deposited at the base-of-slope, forming a fan lobe which prograded onto the lake basin floor. Unit C dominantly consists of mudstone with intercalations of siltstone and sandstone and forms a large-scale coarsening-upward deltaic sequence eventually covered by the fluvial deposits of the Karharbari Formation.Following the glacially influenced sedimentation, the Talchir succession shows a vertical facies progression suggesting gradual deepening of the lake basin and eventual filling up of it due to rapid delta progradation. Such a succession represents deglacial control on basin evolution during the Talchir time. In the initial stage of glacial recession, collapse of a glacier and failure of montane glacial lakes frequently occurred and gave rise to generation of a highly sediment-laden debris flow and a catastrophic flood, which brought abundant coarse clastics into the lake and built a fan-delta on the basin margin. The continued recession and disappearance of glacier resulted in abundant supply of ice-melt water into the graben as well as eustatic sea-level rise, being the cause of the rise in lake-level. Subsequent rapid delta progradation and eventual filling-up of the lake basin suggest rapid lake-level fall after deepening of lake basin. It was possibly caused by the regional uplift due to post-glacial isostatic rebound. Rapid draining of lake water through the graben gave rise to the establishment of an axial drainage system which rapidly filled the lake basin in form of an axially fed delta.  相似文献   

15.
Coastal lagoons are a typical feature of the landscape in central Denmark. The lagoons formed when basins within the inherited glacial topography were flooded by the mid‐Holocene sea‐level rise. The transgression initiated coastal geomorphological processes and prompted marine sedimentation in the inundated areas. Despite their common occurrence and wide distribution in the area, coastal lagoons and their deposits have rarely been studied as sedimentary archives. The absolute chronology established for the basal marine deposits in sediment cores retrieved from coastal lagoons on the island of Samsø, southern Kattegat Sea, central Denmark, is evidence of a nearly synchronous onset of marine sedimentation at different elevations. This is interpreted as a new indication of a period of very rapid relative sea‐level (RSL) rise between 7.6 and 7.2 ka BP. Following a period of RSL highstand, a marked facies change in the deposits from an inactive lagoon yields consistent ages of around 4.1 ka BP and may be an indication of a marked RSL fall. This study illustrates the potential of coastal lagoons as sedimentary archives for the reconstruction of RSL in SW Scandinavia and in similar coastal environments elsewhere.  相似文献   

16.
Holocene deposits of the Hawkesbury River estuary, located immediately north of Sydney on the New South Wales coast, record the complex interplay between sediment supply and relative sea-level rise within a deeply incised bedrock-confined valley system. The present day Hawkesbury River is interpreted as a wave-dominated estuarine complex, divisible into two broad facies zones: (i) an outer marine-dominated zone extending 6 km upstream from the estuary mouth that is characterized by a large, subtidal sandy flood-tidal delta. Ocean wave energy is partially dissipated by this flood-tidal delta, so that tidal level fluctuations are the predominant marine mechanism operating further landward; (ii) a river-dominated zone that is 103 km long and characterized by a well developed progradational bayhead delta that includes distributary channels, levees, and overbank deposits. This reach of the Hawkesbury River undergoes minor tidal level fluctuations and low fluvial runoff during baseflow conditions, but experiences strong flood flows during major runoff events. Fluvial deposits of the Hawkesbury River occur upstream of this zone. The focus of this paper is the Hawkesbury River bayhead delta. History of deposition within this delta over the last c. 12 ka is interpreted from six continuous cores located along the upper reaches of the Hawkesbury River. Detailed sedimentological analysis of facies, whole-core X-ray analysis of burrow traces and a chronostratigraphic framework derived from 10 C-14 dates reveal four stages of incised-valley infilling in the study area: (1) before 17 ka BP, a 0–1 m thick deposit of coarse-grained fluvial sand and silt was laid down under falling-to-lowstand sea level conditions; (2) from 17 to 6·5 ka BP, a 5–10 m thick deposit composed of fine-grained fluvial sand and silt, muddy bayhead delta and muddy central-basin deposits developed as the incised valley was flooded during eustatic sea-level rise; (3) during early highstand, between 6·5 and 3 ka BP, a 3–8 m thick bed of interbedded muddy central-basin deposits and sandy river flood deposits, formed in association with maximum flooding and progradation of sandy distributary mouth-bar deposits commenced; (4) since 3 ka BP, fluvial deposits have prograded toward the estuary mouth in distributary mouth-bar, interdistributary-bay and bayhead-delta plain environments to produce a 5–15 m thick progradational to aggradational bayhead-delta deposit. At the mouth of the Hawkesbury estuary subaqueous fluvial sands interfinger with and overlie marine sands. The Hawkesbury River bayhead-delta depositional succession provides an example of the potential for significant variation of facies within the estuarine to fluvial segment of incised-valley systems.  相似文献   

17.
Radiocarbon-dated marine sediments from five coastal sites along the Strait of Magellan and Beagle Channel in southernmost Chile permit construction of a curve of relative sea-level fluctuations during the Holocene. Morphologic and stratigraphic data point to coastal submergence during the early Holocene as the sea rose to a maximum level at least 3.5 m higher than present about 5000 yr ago. Progressive emergence then followed during the late Holocene. Data from widely separated localities define a smooth curve, the form of which is explainable in terms of isostatic and hydroisostatic deformation of the crust resulting from changing ice and water loads. Apparently anomalous data from one site located more than 100 km behind the outer limit of the last glaciation may reflect isostatic response to deglaciation. The sea-level curve resembles one derived by Clark and Bloom (1979, In “Proceedings of the 1978 International Symposium on Coastal Evolution in the Quaternary, Sao Paulo, Brasil,” pp. 41–60. Sao Paulo) using a spherical Earth model, both in amplitude and in the timing of the maximum submergence.  相似文献   

18.
The coastal cliff section at Kås Hoved in northern Denmark represents one of the largest exposures of marine interglacial deposits in Europe. High‐resolution analyses of sediments, foraminifera, ostracods, and stable isotopes (oxygen and carbon) in glacial‐interglacial marine sediments from this section, as well as from two adjacent boreholes, are the basis for an interpretation of marine environmental and climatic change through the Late Elsterian‐Holsteinian glacial‐interglacial cycle. The overlying glacial deposits show two ice advances during the Saalian and Weichselian glaciations. The assemblages in the initial glacier‐proximal part of the marine Late Elsterian succession reveal fluctuations in the inflow of sediment‐loaded meltwater to the area. This is followed by faunal indication of glacier‐distal, open marine conditions, coinciding with a gradual climatic change from arctic to subarctic environments. Continuous marine sedimentation during the glacial‐interglacial transition is presumably a result of a large‐scale isostatic subsidence caused by the preceding extended Elsterian glaciation. The similarity of the climatic signature of the interglacial Holsteinian and Holocene assemblages in this region indicates that the Atlantic Ocean circulation was similar during these two interglacials, whereas Eemian interglacial assemblages indicate a comparatively high water temperature associated with an enhanced North Atlantic Current. The foraminiferal zones are correlated with other Elsterian‐Holsteinian sites in Denmark, as well as those in the type area for the Holsteinian interglacial in northern Germany and the southern North Sea. Correlation of the NW European Holsteinian succession with the marine isotope stages MIS 7, 9 or 11 is still unresolved.  相似文献   

19.
We present results from an investigation of relative sea-level changes in the Qaqortoq area in south Greenland from c. 11 000 cal. yr BP to the present. Isolation and transgression sequences from six lakes and two tidal basins have been identified using stratigraphical analyses, magnetic susceptibility, XRF and macrofossil analyses. Macrofossils and bulk sediments have been dated by AMS radiocarbon dating. Maximum and minimum altitudes for relative sea level are provided from two deglaciation and marine lagoon sequences. Initially, relative sea level fell rapidly and reached present-day level at ∼9000 cal. yr BP and continued falling until at least 8800 cal. yr BP. Between 8000 and 6000 cal. yr BP, sea level reached its lowest level of around 6-8 m below highest astronomical tide (h.a.t.). At around 3750 cal. yr BP, sea level has reached above 2.7 m below h.a.t. and continued to rise slowly, reaching the present-day level between ∼2000 cal. yr BP and the present. As in the Nanortalik area further south, initial isostatic rebound caused rapid isolation of low elevation basins in the Qaqortoq area. Distinct isolation contacts in the sediments are observed. The late Holocene transgression is less well defined and occurred over a longer time interval. The late Holocene sea-level rise implies reloading by advancing glaciers superimposed on the isostatic signal from the North American Ice Sheet. One consequence of this transgression is that settlements of Palaeo-Eskimo cultures from ∼4000 cal. yr BP may have been transgressed by the sea.  相似文献   

20.
Sediment successions from the Kanin Peninsula and Chyoshskaya Bay in northwestern Russia contain information on the marginal behaviour of all major ice sheets centred in Scandinavia, the Barents Sea and the Kara Sea during the Eemian-Weichselian. Extensive luminescence dating of regional lithostratigraphical units, supported by biostratigraphical evidence, identifies four major ice advances at 100-90, 70-65, 55-45 and 20-18 kyr ago interbedded with lacustrine, glaciolacustrine and marine sediments. The widespread occurrence of marine tidal sediments deposited c. 65-60 kyr ago allows a stratigraphical division of the Middle Weichselian Barents Sea and Kara Sea ice sheets into two shelf-based glaciations separated by almost complete deglaciation. The first ice dispersal centre was in the Barents Sea and thereafter in the Kara Sea. It is possible to extract both flow patterns from ice marginal landforms inside the southward termination. Accordingly, it is proposed that the Markhida line and its western continuation are asynchronous and originate from two separate glaciations before and after the marine transgression. The marine sedimentation occurred during a eustatic sea-level rise of up to 20 m/1000 yr, i.e. the Mezen Transgression. We speculate that the rapid eustatic sea-level rise triggered a collapse of the Barents Sea Ice Sheet at the MIS (Marine Isotope Stage) 4 to 3 transition. This is motivated by lack of an early marine highstand, the timing of events, and the marginal position of Arkhangelsk relative to open marine conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号