首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The focus of this study is to document the possible role of the southern subtropical Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Composite analyses of sea surface temperature (SST) fields prior to El Niño-Southern Oscillation (ENSO), Indian summer monsoon (ISM), Australian summer monsoon (AUSM), tropical Indian Ocean dipole (TIOD) and Maritime Continent rainfall (MCR) indices reveal the southeast Indian Ocean (SEIO) SSTs during late boreal winter as the unique common SST precursor of these various phenomena after the 1976–1977 regime shift. Weak (strong) ISMs and AUSMs, El Niños (La Niñas) and positive (negative) TIOD events are preceded by significant negative (positive) SST anomalies in the SEIO, off Australia during boreal winter. These SST anomalies are mainly linked to subtropical Indian Ocean dipole events, recently studied by Behera and Yamagata (Geophys Res Lett 28:327–330, 2001). A wavelet analysis of a February–March SEIO SST time series shows significant spectral peaks at 2 and 4–8 years time scales as for ENSO, ISM or AUSM indices. A composite analysis with respect to February–March SEIO SSTs shows that cold (warm) SEIO SST anomalies are highly persistent and affect the westward translation of the Mascarene high from austral to boreal summer, inducing a weakening (strengthening) of the whole ISM circulation through a modulation of the local Hadley cell during late boreal summer. At the same time, these subtropical SST anomalies and the associated SEIO anomalous anticyclone may be a trigger for both the wind-evaporation-SST and wind-thermocline-SST positive feedbacks between Australia and Sumatra during boreal spring and early summer. These positive feedbacks explain the extraordinary persistence of the SEIO anomalous anticyclone from boreal spring to fall. Meanwhile, the SEIO anomalous anticyclone favors persistent southeasterly wind anomalies along the west coast of Sumatra and westerly wind anomalies over the western Pacific, which are well-known key factors for the evolution of positive TIOD and El Niño events, respectively. A correlation analysis supports these results and shows that SEIO SSTs in February–March has higher predictive skill than other well-established ENSO predictors for forecasting Niño3.4 SST at the end of the year. This suggests again that SEIO SST anomalies exert a fundamental influence on the transitions of the whole monsoon-ENSO system during recent decades.  相似文献   

2.
This work attempts to reconcile in a common and comprehensive framework the various conflicting results found in the literature regarding Indian Summer Monsoon (ISM) rainfall-Sea Surface Temperature (SST) relationships, especially the links with El-Ni?o Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). To do so, we first examine the linear relationships between ISM rainfall and global SST anomalies during 1950–1976 and 1979–2006 periods. Our results highlight the existence of significant modulations in SST teleconnections and precursory patterns between the first (June–July, JJ) and second part (August–September, AS) of the monsoon. This JJ–AS rainfall dichotomy is more pronounced after the 1976–1977 climate regime shift and tends to blur the global ISM-ENSO signal during the recent period, leading to an apparent weakening of this relationship at the seasonal time scale. Although ISM rainfall in JJ and AS is still strongly linked to ENSO over both periods, the lead-lag relationships between ENSO and AS Indian rainfall have changed during recent decades. Indeed, ENSO variability in the preceding boreal winter has now a significant impact on rainfall variability during the second half of ISM. To evaluate in more details the impact of this JJ-AS dichotomy on the ISM-ENSO-IOD relationships, ISM correlations are also examined separately during El Ni?o and La Ni?a years. Results indicate that the early onset of El Ni?o during boreal spring causes deficient monsoon rainfall in JJ. In response to weaker monsoon winds, warm SST anomalies appear in the west equatorial IO, generating favorable conditions for the development of a positive IOD in AS. Local air-sea processes triggered by the SST anomalies in the eastern node of IOD seem, in turn, to have a more active role on AS rainfall variability, as they may counteract the negative effect of El Ni?o on ISM rainfall via a modulation of the local Hadley circulation in the eastern IO. The JJ–AS rainfall dichotomy and its recent amplification may then result from an enhancement of these IO feedbacks during recent El Ni?o years. This explains why, although El Ni?o events are stronger, a weakening of the ISM-ENSO relationship is observed at the seasonal scale after 1979. Results during La Ni?a years are consistent with this hypothesis although local processes in the southeast IO now play a more prominent role and act to further modulate ISM rainfall in AS. Finally, our results highlight the existence of a biennal rhythm of the IOD-ENSO-ISM system during the recent period, according to which co-occurring El Ni?o and positive IOD events tend to be followed by a warming of the IO, a wet ISM during summer and, finally, a La Ni?a event during the following boreal winter.  相似文献   

3.
Interannual variability of the Indian summer monsoon rainfall has two dominant periodicities, one on the quasi-biennial (2–3 year) time scale corresponding to tropospheric biennial oscillation (TBO) and the other on low frequency (3–7 year) corresponding to El Niño Southern Oscillation (ENSO). In the present study, the spatial and temporal patterns of various atmospheric and oceanic parameters associated with the Indian summer monsoon on the above two periodicities were investigated using NCEP/NCAR reanalysis data sets for the period 1950–2005. Influences of Indian and Pacific Ocean SSTs on the monsoon season rainfall are different for both of the time scales. Seasonal evolution and movement of SST and Walker circulation are also different. SST and velocity potential anomalies are southeast propagating on the TBO scale, while they are stationary on the ENSO scale. Latent heat flux and relative humidity anomalies over the Indian Ocean and local Hadley circulation between the Indian monsoon region and adjacent oceans have interannual variability only on the TBO time scale. Local processes over the Indian Ocean determine the Indian Ocean SST in biennial periodicity, while the effect of equatorial east Pacific SST is significant in the ENSO periodicity. TBO scale variability is dependent on the local factors of the Indian Ocean and the Indian summer monsoon, while the ENSO scale processes are remotely controlled by the Pacific Ocean.  相似文献   

4.
This paper uses recent gridded climatological data and a coupled general circulation model (GCM) simulation in order to assess the relationships between the interannual variability of the Indian summer monsoon (ISM) and the El Niño-Southern Oscillation (ENSO). The focus is on the dynamics of the ISM-ENSO relationships and the ability of the state-of-the-art coupled GCM to reproduce the complex lead-lag relationships between the ISM and the ENSO. The coupled GCM is successful in reproducing the ISM circulation and rainfall climatology in the Indian areas even though the entire ISM circulation is weaker relative to that observed. In both observations and in the simulation, the ISM rainfall anomalies are significantly associated with fluctuations of the Hadley circulation and the 200 hPa zonal wind anomalies over the Indian Ocean. A quasi-biennial time scale is found to structure the ISM dynamical and rainfall indices in both cases. Moreover, ISM indices have a similar interannual variability in the simulation and observations. The coupled model is less successful in simulating the annual cycle in the tropical Pacific. A major model bias is the eastward displacement of the western North Pacific inter-tropical convergence zone (ITCZ), near the dateline, during northern summer. This introduces a strong semiannual component in Pacific Walker circulation indices and central equatorial Pacific sea surface temperatures. Another weakness of the coupled model is a less-than-adequate simulation of the Southern Oscillation due to an erroneous eastward extension of the Southern Pacific convergence zone (SPCZ) year round. Despite these problems, the coupled model captures some aspects of the interannual variability in the tropical Pacific. ENSO events are phase-locked with the annual cycle as observed, but are of reduced amplitude relative to the observations. Wavelet analysis of the model Niño34 time series shows enhanced power in the 2–4 year band, as compared to the 2–8 year range for observations during the 1950–2000 period. The ISM circulation is weakened during ENSO years in both the simulation and the observations. However, the model fails to reproduce the lead-lag relationship between the ISM and Niño34 sea surface temperatures (SSTs). Furthermore, lag correlations show that the delayed response of the wind stress over the central Pacific to ISM variability is insignificant in the simulation. These features are mainly due to the unrealistic interannual variability simulated by the model in the western North Pacific. The amplitude and even the sign of the simulated surface and upper level wind anomalies in these areas are not consistent with observed patterns during weak/strong ISM years. The ISM and western North Pacific ITCZ fluctuate independently in the observations, while they are negatively and significantly correlated in the simulation. This isolates the Pacific Walker circulation from the ISM forcing. These systematic errors may also contribute to the reduced amplitude of ENSO variability in the coupled simulation. Most of the unrealistic features in simulating the Indo-Pacific interannual variability may be traced back to systematic errors in the base state of the coupled model.  相似文献   

5.
The main goal of this study is to determine the oceanic regions corresponding to variability in African rainfall and seasonal differences in the atmospheric teleconnections. Canonical correlation analysis (CCA) has been applied in order to extract the dominant patterns of linear covariability. An ensemble of six simulations with the global atmospheric general circulation model ECHAM4, forced with observed sea surface temperatures (SSTs) and sea ice boundary variability, is used in order to focus on the SST-related part of African rainfall variability. Our main finding is that the boreal summer rainfall (June–September mean) over Africa is more affected by SST changes than in boreal winter (December–March mean). In winter, there is a highly significant link between tropical African rainfall and Indian Ocean and eastern tropical Pacific SST anomalies, which is closely related to El Niño-Southern Oscillation (ENSO). However, long-term changes are found to be associated with SST changes in the Indian and tropical Atlantic Oceans, thus, showing that the tropical Atlantic plays a critical role in determining the position of the intertropical convergence zone (ITCZ). Since ENSO is less in summer, the tropical Pacific and the Indian Oceans are less important for African rainfall. The African summer monsoon is strongly influenced by SST variations in the Gulf of Guinea, with a response of opposite sign over the Sahelian zone and the Guinean coast region. SST changes in the subtropical and extratropical oceans mostly take place on decadal time scales and are responsible for low-frequency rainfall fluctuations over West Africa. The modelled teleconnections are highly consistent with the observations. The agreement for most of the teleconnection patterns is remarkable and suggests that the modelled rainfall anomalies serve as suitable predictors for the observed changes.  相似文献   

6.
Summary Observational data are used to explore the relationship between surface air temperature anomaly gradients and Indian summer monsoon rainfall (ISMR). The meridional temperature anomaly gradient across Eurasia during January directed towards equator (pole) is a very good precursor of subsequent excess (deficient) Indian summer monsoon rainfall (ISMR). This gradient directed towards equator (pole) indicates below (above) normal blocking activity over Eurasia, which leads to less (more) than normal southward penetration of dry and cold mid latitude westerlies over the Indian monsoon region, which ultimately strengthens (weakens) the normal monsoon circulation. These findings suggest a mechanism for the weakening of relationship between El Niño and ISMR.Though there is a strong fundamental association between El Niño (warm ENSO) and deficient Indian summer monsoon rainfall (ISMR), this relationship was weak during the period 1921–1940 and the recent decade (1991–1998). During the El Niño years of 1921–1940 and 1901–1998, the meridional temperature anomaly gradient across Eurasia (Eurasian forcing) during January was directed towards equator. On the other hand, during the El Niño years of 1901–1920 and 1941–1990 this gradient was directed towards pole. Thus during 1921–1940 and 1991–1998, the adverse impact of El Niño on Indian monsoon was reduced by the favorable Eurasian forcing resulting in the weak association between El Niño and ISMR. This finding disagrees with the hypothesis of winter warming over the Eurasian continent as the reason for the observed weakening of this relationship during recent decade.  相似文献   

7.
Remotely forced variability in the tropical Atlantic Ocean   总被引:1,自引:1,他引:1  
An ensemble of eight hindcasts has been conducted using an ocean-atmosphere general circulation model fully coupled only within the Atlantic basin, with prescribed observational sea surface temperature (SST) for 1950–1998 in the global ocean outside the Atlantic basin. The purpose of these experiments is to understand the influence of the external SST anomalies on the interannual variability in the tropical Atlantic Ocean. Statistical methods, including empirical orthogonal function analysis with maximized signal-to-noise ratio, have been used to extract the remotely forced Atlantic signals from the ensemble of simulations. It is found that the leading external source on the interannual time scales is the El Niño/Southern Oscillation (ENSO) in the Pacific Ocean. The ENSO signal in the tropical Atlantic shows a distinct progression from season to season. During the boreal winter of a maturing El Niño event, the model shows a major warm center in the southern subtropical Atlantic together with warm anomalies in the northern subtropical Atlantic. The southern subtropical SST anomalies is caused by a weakening of the southeast trade winds, which are partly associated with the influence of an atmospheric wave train generated in the western Pacific Ocean and propagating into the Atlantic basin in the Southern Hemisphere during boreal fall. In the boreal spring, the northern tropical Atlantic Ocean is warmed up by a weakening of the northeast trade winds, which is also associated with a wave train generated in the central tropical Pacific during the winter season of an El Niño event. Apart from the atmospheric planetary waves, these SST anomalies are also related to the sea level pressure (SLP) increase in the eastern tropical Atlantic due to the global adjustment to the maturing El Niño in the tropical Pacific. The tropical SLP anomalies are further enhanced in boreal spring, which induce anomalous easterlies on and to the south of the equator and lead to a dynamical oceanic response that causes cold SST anomalies in the eastern and equatorial Atlantic from boreal spring to summer. Most of these SST anomalies persist into the boreal fall season.
B. HuangEmail:
  相似文献   

8.
Summary This study investigates the impacts of five recent ENSO events on southern Africa, the associated circulation anomalies and the ability of an atmospheric general circulation model (UKMO HadAM3) to represent these impacts when forced by observed sea-surface temperature (SST). It is found that the model is most successful for the 1997/8 El Niño but does less well for the 1991/2 and 2002/3 El Niños and the 1995/6 and 1999/00 La Niña events. Diagnostics from the model and NCEP re-analyses suggest that modulations to the Angola low, an important centre of tropical convection over southern Africa during austral summer, are often important for influencing the rainfall impacts of ENSO over subtropical southern Africa. Since the model has difficulty in adequately representing this regional circulation feature and its variability, it has problems in capturing ENSO rainfall impacts over southern Africa. During 1997/8, modulations to the Angola low were weak and Indian Ocean SST forcing strong and the model is relatively successful. The implications of these results for dynamical model based seasonal forecasting of the region are discussed.Current affiliation: CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore, India.  相似文献   

9.
In this study, the impact of the ocean–atmosphere coupling on the atmospheric mean state over the Indian Ocean and the Indian Summer Monsoon (ISM) is examined in the framework of the SINTEX-F2 coupled model through forced and coupled control simulations and several sensitivity coupled experiments. During boreal winter and spring, most of the Indian Ocean biases are common in forced and coupled simulations, suggesting that the errors originate from the atmospheric model, especially a dry islands bias in the Maritime Continent. During boreal summer, the air-sea coupling decreases the ISM rainfall over South India and the monsoon strength to realistic amplitude, but at the expense of important degradations of the rainfall and Sea Surface Temperature (SST) mean states in the Indian Ocean. Strong SST biases of opposite sign are observed over the western (WIO) and eastern (EIO) tropical Indian Ocean. Rainfall amounts over the ocean (land) are systematically higher (lower) in the northern hemisphere and the south equatorial Indian Ocean rainfall band is missing in the control coupled simulation. During boreal fall, positive dipole-like errors emerge in the mean state of the coupled model, with warm and wet (cold and dry) biases in the WIO (EIO), suggesting again a significant impact of the SST errors. The exact contributions and the distinct roles of these SST errors in the seasonal mean atmospheric state of the coupled model have been further assessed with two sensitivity coupled experiments, in which the SST biases are replaced by observed climatology either in the WIO (warm bias) or EIO (cold bias). The correction of the WIO warm bias leads to a global decrease of rainfall in the monsoon region, which confirms that the WIO is an important source of moisture for the ISM. On the other hand, the correction of the EIO cold bias leads to a global improvement of precipitation and circulation mean state during summer and fall. Nevertheless, all these improvements due to SST corrections seem drastically limited by the atmosphere intrinsic biases, including prominently the unimodal oceanic position of the ITCZ (Inter Tropical Convergence Zone) during summer and the enhanced westward wind stress along the equator during fall.  相似文献   

10.
The inverse relationship between the warm phase of the El Ni?o Southern Oscillation(ENSO) and the Indian Summer Monsoon Rainfall(ISMR) is well established. Yet, some El Ni?o events that occur in the early months of the year(boreal spring) transform into a neutral phase before the start of summer, whereas others begin in the boreal summer and persist in a positive phase throughout the summer monsoon season. This study investigates the distinct influences of an exhausted spring El Ni?o(springtime)...  相似文献   

11.
Recent studies show that SouthEast Indian Ocean (SEIO) SSTs are a highly significant precursor of transitions of the whole monsoon-El Niño-Southern Oscillation (ENSO) system during recent decades. However, the reasons for this specific interannual variability have not yet been identified unequivocally from the observations. Among these, the possibility of SEIO SST-driven variability in the monsoon-ENSO system is investigated here by inserting positive/negative SEIO temperature anomalies in the February’s restart files of a state-of-the-art coupled General Circulation Model (GCM) for 49 years of a control simulation. For each year of the control simulation, the model was then integrated for a 1-year period in fully coupled mode. These experiments show that Indian Summer Monsoon (ISM) and tropical Indian Ocean Dipole Mode (IODM) events are significantly influenced by the SEIO temperature perturbations inserted in the mixed layer of the coupled GCM several months before. A warm SEIO perturbation, inserted in late boreal winter, slowly propagates northward during the following seasons, implies enhanced ISM rainfall and finally triggers a negative IODM pattern during boreal fall in agreement with observations. A reversed evolution is simulated for a cold SEIO perturbation. It is shown that the life cycle of the simulated SEIO signal is driven by the positive wind-evaporation-SST, coastal upwelling and wind-thermocline-SST feedbacks. Further diagnosis of the sensitivity experiments suggests that stronger ISM and IODM variabilities are generated by excluding the El Niño years of the control simulation or when the initial background state in the SEIO is warmer. This finding confirms that IODM events may be triggered by multiple factors, other than ENSO, including subtropical SEIO SST anomalies. However, the ENSO mode does not react significantly to the SEIO temperature perturbation in the perturbed runs even though the simulated Pacific pattern agrees with the observations during boreal fall. These discrepancies with the observations may be linked to model biases in the Pacific and to the too strong ENSO simulated by this coupled GCM. These modeling evidences confirm that subtropical Indian Ocean SST anomalies generated by Mascarene high pulses during austral summer are a significant precursor of both ISM and IODM events occuring several months later.  相似文献   

12.
薛峰  段欣妤  苏同华 《大气科学》2018,42(6):1407-1420
本文对比分析了1998年和2016年这两个强El Ni?o衰减年东亚夏季风的季节内变化。结果表明,在6~7月期间,由于热带印度洋海温偏高、对流偏强,造成西太平洋暖池对流偏弱,西太平洋副热带高压(副高)偏西偏强,长江流域降水偏多,华南偏少,东亚夏季风异常具有典型的El Ni?o衰减年特征。但两年的8月份有很大差异,虽然1998年8月与6~7月相似,但2016年8月份则完全不同。受乌拉尔地区异常反气旋的影响,源自西伯利亚东部的北风异常穿越东亚并直抵暖池地区,造成副高分裂并减弱东退,同时激发暖池对流发展,而对流的发展则进一步促使副高减弱。因此,2016年8月东亚夏季风异常与1998年8月相反,中国北方夏季降水异常也呈现很大差异。另外,1998年热带大西洋偏暖,并通过热带环流变化影响到东亚夏季风异常,其强迫作用与热带印度洋类似。而2016年大西洋海温异常较弱,对东亚夏季风影响也较弱。因此,El Ni?o对东亚夏季风的影响不仅与其强度有关,还与El Ni?o衰减之后造成的印度洋和大西洋海温异常有关。本文的分析结果表明,即使在强El Ni?o衰减年夏季,由于El Ni?o之间的个性差异以及其他因子的影响,东亚夏季风季节内变化仍然能呈现出显著差异,特别是在8月份。因此,在预测东亚夏季风异常时,宜将6~7月和8月分别考虑。此外,为进一步提高东亚夏季风预测水平,除传统的季度预测外,还需要进一步加强季节内尺度的预测。  相似文献   

13.
Yamaura  Tsuyoshi  Kajikawa  Yoshiyuki 《Climate Dynamics》2017,48(9-10):3003-3014

A decadal change in activity of the boreal summer intraseasonal oscillation (BSISO) was identified at a broad scale. The change was more prominent during August–October in the boreal summer. The BSISO activity during 1999–2008 (P2) was significantly greater than that during 1984–1998 (P1). Compared to P1, convection in the BSISO was enhanced and the phase speed of northward-propagating convection was reduced in P2. Under background conditions, warm sea surface temperature (SST) anomalies in P2 were apparent over the tropical Indian Ocean and the western tropical Pacific. The former supplied favorable conditions for the active convection of the BSISO, whereas the latter led to a strengthened Walker circulation through enhanced convection. This induced descending anomalies over the tropical Indian Ocean. Thermal convection tends to be suppressed by descending anomalies, whereas once an active BSISO signal enters the Indian Ocean, convection is enhanced through convective instability by positive SST anomalies. After P2, the BSISO activity was weakened during 2009–2014 (P3). Compared to P2, convective activity in the BSISO tended to be inactive over the southern tropical Indian Ocean in P3. The phase speed of the northward-propagating convection was accelerated. Under background conditions during P3, warmer SST anomalies over the maritime continent enhance convection, which strengthened the local Hadley circulation between the western tropical Pacific and the southern tropical Indian Ocean. Hence, the convection in the BSISO over the southern tropical Indian Ocean was suppressed. The decadal change in BSISO activity correlates with the variability in seasonal mean SST over the tropical Asian monsoon region, which suggests that it is possible to predict the decadal change.

  相似文献   

14.
The evolution of sea surface temperature (SST) and thermocline (represented by 20 °C isotherm depth, D20) in the east equatorial Indian Ocean (EIO) associated with the Indian Ocean Dipole (IOD) years is studied for the period of 50 years from 1958 to 2007. A new IOD index based on combined anomalies of surface winds, D20 and SST over the equatorial Indian Ocean is defined to identify strong and weak IOD events. It is found that the evolution of strong IOD events is driven by ocean dynamics in the form of thermocline–SST coupling and is strongly interactive with the atmosphere, whereas the weak IOD events are mere response to surface winds without such dynamical coupling. The easterly wind anomalies extend up to the western equatorial Indian Ocean (WIO) during strong IOD years and support enhanced EIO air–sea interactions. On the other hand, the evolution of zonal wind anomalies is weak during the weak IOD years. Thermocline–SST coupling is robust in both EIO and WIO during strong IOD years, which is primarily responsible for the enhanced SST gradient, strong enough to establish anomalous Walker circulation within the Indian Ocean. The strong convection over the WIO associated with the Indian Ocean Walker cell triggers a secondary cell with subsidence over the African landmass. This double cell structure over the equatorial Indian Ocean is not reported before. Such double cell structure is not evident in weak IOD years and instead the convection over WIO extends up to African landmass. These are well supported by the spatial pattern of anomalous precipitable water during strong and weak IOD years. Strengthening of monsoon flow and local Hadley cell associated with strong IOD events enhances precipitation over the Indian subcontinent, whereas weak IOD years have less impact on the Indian summer monsoon circulation and rainfall. Analysis reveals that the EIO thermocline index and combined index could be potential predictors for the central Indian rainfall during summer.  相似文献   

15.
Climate Dynamics - Indian Summer Monsoon (ISM) rainfall and El Niño-Southern Oscillation (ENSO) exhibit an inverse relationship during boreal summer, which is one of the roots of ISM...  相似文献   

16.
赤道西太平洋-印度洋海温异常对亚洲夏季风的影响   总被引:8,自引:0,他引:8  
本文采用了p-σ五层原始方程模式模拟并研究了赤道西太平洋-印度洋海温距平场对亚洲夏季风的影响,计算了四种不同的海温距平试验方案。试验结果表明赤道西太平洋海温正距平使对流层下层的印度低压明显加强,副高北挺,季风槽加深,同时加强了对流层上层的反气旋环流。赤道西印度洋暖海温的模拟结果与赤道西太平洋暖海温对上述系统的影响相反,而赤道西印度洋冷海温对季风环流的影响与赤道西太平洋暧海温的影响一致。试验进一步表明赤道西太平洋-印度洋海温距平的纬向梯度方向对亚洲夏季风的影响是主要的,这一结论与实际观测结果一致。本文进一步讨论了赤道海温距平对越赤道气流、印度洋赤道东-西纬向环流和非绝热加热场的影响,结果都表明赤道西太平洋海温正距平和赤道西印度洋海温负距平的模拟特征与反El Nino年亚洲夏季环流特征类似,而赤道西印度洋海员正距平的模拟特征与El Nino年亚洲夏季坏流特征类似。  相似文献   

17.
两类厄尔尼诺事件发展年秋季印度洋海温异常特征对比   总被引:6,自引:1,他引:5  
基于1951—2010年逐月海气多要素观测资料,对比分析了两类厄尔尼诺事件发展年秋季印度洋的海温异常及大气响应特征,探讨了印度洋偶极子的发生与两类厄尔尼诺事件特征的可能联系。结果表明,两类厄尔尼诺事件的发展年均会出现印度洋偶极子,但出现的概率不同:大多数东部型厄尔尼诺事件都会伴有正位相印度洋偶极子发生;而仅一半的中部型厄尔尼诺事件期间会出现正位相印度洋偶极子的异常海温型,且强度较弱。从印度洋偶极子与两类厄尔尼诺事件的物理联系上看,东部型厄尔尼诺事件期间,印度洋偶极子的发生与其强度联系密切:印度洋偶极子发生在东部型厄尔尼诺事件较强期间,两者通过海洋大陆的异常强下沉运动及大范围负异常降水相联系;东部型厄尔尼诺事件偏弱时并无印度洋偶极子出现,海洋大陆异常下沉运动及负异常降水很弱。然而,中部型厄尔尼诺事件期间印度洋偶极子的发生与其强度并无显著的关系,而与太平洋高海温区的位置存在一定的可能联系:在有印度洋偶极子发生的中部型厄尔尼诺事件发展年秋季,热带太平洋异常高海温区的位置相对偏东,海洋大陆出现显著下沉运动和大范围负异常降水,热带东印度洋为大范围强异常东风控制;但无印度洋偶极子发生的中部型厄尔尼诺事件时,热带太平洋高海温区位置相对偏西,极弱的海洋大陆下沉支对热带印度洋异常海温作用非常有限。  相似文献   

18.
This study proposes a new explanation for the formation of precipitation anomaly patterns in the boreal summer during the El Nino-Southern Oscillation (ENSO) developing and decaying phases. During the boreal summer June-July-August (JJA) (0) of the El Nino (La Nina) developing phase, the upper level (300-100 hPa) positive potential temperature anomalies resemble a Matsuno-Gill-type response to central Pacific heating (cooling), and the lower level (1000-850 hPa) potential temperature anomalies are consistent with local SST anomalies. During the boreal summer JJA(1) of the El Niño (La Nina) decaying phase, the upper level potential temperature warms over the entire tropical zone and resembles a Matsuno-Gill-type response to Indian Ocean heating (cooling), and the lower level potential temperature anomalies follow local SST anomalies. The vertical heterogeneity of potential temperature anomalies influences the atmospheric stability, which in turn influences the precipitation anomaly pattern. The results of numerical experiments confirm our observations.  相似文献   

19.
Summary The influence of ENSO on intraseasonal variability over the Tanzanian coast during the short (OND) and long (MAM) rainy seasons is examined. In particular, variability in the rainfall onset, peak and end dates as well as dry spells are considered. In general, El Niño appears to be associated with above average rainfall while La Niña is associated with below average rainfall over the northern Tanzanian coast during OND, and to lesser extent MAM. Over the southern coast, the ENSO impacts are less coherent and this region appears to be a transition zone between the opposite signed impacts over equatorial East and southern Africa. The increased north coast rainfall during El Niño years is generally due to a longer than normal rainfall season associated with early onset while reduced rainfall during La Niña years tends to be associated with a late onset, and thus a shorter than average rainfall season. Wet conditions during El Niño years were associated with enhanced convection and low-level easterly anomalies over the equatorial western Indian Ocean implying enhanced advection of moisture from the Indian Ocean while the reverse is true for La Niña years. Hovmöller plots for OLR and zonal wind at 850 hPa and 200 hPa show eastward, westward propagating and stationary features over the Indian Ocean. It was observed that the propagating features were absent during strong El Niño years. Based on the Hovmöller results, it is observed that the convective oscillations over the Tanzanian coast have some of the characteristic features of intraseasonal oscillations occurring elsewhere in the tropics.  相似文献   

20.
This study has investigated the possible relation between the Indian summer monsoon and the Pacific Decadal Oscillation (PDO) observed in the sea surface temperature (SST) of the North Pacific Ocean. Using long records of observations and coupled model (NCAR CCSM4) simulation, this study has found that the warm (cold) phase of the PDO is associated with deficit (excess) rainfall over India. The PDO extends its influence to the tropical Pacific and modifies the relation between the monsoon rainfall and El Niño-Southern Oscillation (ENSO). During the warm PDO period, the impact of El Niño (La Niña) on the monsoon rainfall is enhanced (reduced). A hypothesis put forward for the mechanism by which PDO affects the monsoon starts with the seasonal footprinting of SST from the North Pacific to the subtropical Pacific. This condition affects the trade winds, and either strengthens or weakens the Walker circulation over the Pacific and Indian Oceans depending on the phase of the PDO. The associated Hadley circulation in the monsoon region determines the impact of PDO on the monsoon rainfall. We suggest that knowing the phase of PDO may lead to better long-term prediction of the seasonal monsoon rainfall and the impact of ENSO on monsoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号