首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
THE2-DNUMERICALSTUDYONTHEPRINCIPLESOFRAIN-ENHANCEMENTANDHAIL-SUPPRESSIONINCONVECTIVECLOUDSMaoYuhua(毛玉华)andHuZhijin(胡志晋)THE2-D...  相似文献   

2.
南海海域海-气耦合模式及其数值模拟试验   总被引:11,自引:1,他引:10  
在NCAR区域气候模式RegGM2和普林斯顿海洋模式POM基础上发展适用于区域海-气相互作用研究的区域海-气耦合模式,模式采用同步耦合、海洋模式将海表温度提供给大气模式,大气模式为海洋模式提供太阳短波辐射、感热能量、潜热通量。海洋与大气模式每15min交换一次通量。耦合过程没有使用通量校正。使用该模式对中国南海区域1995年5-7月大气和海洋进行了模拟试验,将模拟结果与COADS通量强迫的模拟结果  相似文献   

3.
利用STEM-II三维区域尺度大气化学模式,研究了1994年3月1日至14日东亚地区春季沙尘气溶胶对硫化物输送和沉降的影响。结果表明,SO2和SO24的大值区主要出现在我国东部地区。在模拟时段,日本地区火山源的排放对该地区大气中S分布的贡献达10%~30%。并与当时飞机的观测结果相吻合。模拟区域内SO2和SO24的收支的分析研究表明,在硫的总排放量中,从东边界面流出去的输送通量最大,并出现在30~400N带的2~6km高度上,这是与该地区最大的人为排放源所在地相一致的。最后,给出了模拟时段整个对流层大气SO2-4气溶胶含量的分布,还仨算了SO2-4气溶胶对地气系统的直接辐射强迫和温度变化的影响。  相似文献   

4.
GROUND-BASED MEASUREMENTS OF COLUMN ABUNDANCE OF OZONE AN   总被引:1,自引:0,他引:1  
GROUND-BASEDMEASUREMENTSOFCOLUMNABUNDANCEOFOZONEANDUV-BRADIATIONOVERZHONGSHANSTATION,ANTARCTICAFORTHE1993“OZONEHOLE”ZhouXiuji...  相似文献   

5.
海洋中碳及营养物自然分布的数值模拟   总被引:1,自引:1,他引:0  
用海洋生物化学环流模式(B- GCM) 模拟了工业化前碳及营养物在海洋中的分布, 并得到了较为合理的结果。模式考虑了海洋表面化学和一个简单的生物过程。模式的主要预报变量有总CO2 、碱度和磷酸盐。决定生物化学物质分布的三个参数的取值为: POC 通量的垂直廓线的指数a 取观测值0-858 、生物生产效率r = 2/ 年和下落比R= 0-06 。用B-GCM 模拟出的结果与GEOSECS观测值基本相符。  相似文献   

6.
SCIENTIFIC-OPERATIONALEXPERIMENTSANDSYNOPTIC-DYNAMICSTUDYOFHEAVYRAINFALLS¥DingYihui(丁一汇)SCIENTIFIC-OPERATIONALEXPERIMENTSANDS...  相似文献   

7.
区域性光化学模式与LLA-C机制的模拟性能比较   总被引:1,自引:0,他引:1  
以 L L A- C 机制为基准,在[ N M H C]/[ N O# - x] 比率分别为179 、714 、286 条件下测试了区域性光化学模式( R O S) 的模拟性能。结果表明 R O S 模式在上述三种初值条件下均能从总体趋势上给出与 L L A - C 机制相似的结果, 但只有当非甲烷烃浓度较高([ N M H C]/[ N Ox] > 12) 时 R O S 模式模拟值与 L L A- C 机制预测值比较接近。在这种条件下, R O S 模型对 O H 的预测值有待改进。我国大气中相当高的[ N M H C]/[ N Ox] 比率说明 R O S 模式用于全国范围内的空气质量趋势模拟是可行的。  相似文献   

8.
SHORT-TERMCLIMATECHANGEANDITSCAUSEANDCLIMATEPREDICTIONINCHINA¥WeiFengying(魏凤英)(InstituteofSynopticandDynamicMeteorology.)Beij...  相似文献   

9.
THECHANGESANDCLIMATICJUMPSINFERREDFROMTHEAGRICULTURALDRYNESSANDWETNESSINTHECHANGJIANG-HUAIHEVALLEYFORTHELAST500YEARSXueHeng(薛...  相似文献   

10.
热带温带相互作用对热带季风/大气-海洋系统(MAOS)的作用TetsuzoYASUNARI,KEN’ichiUENO和TOMOhikoTOMITA(筑波大学,日本)1前言一般是两年周期的ENSO和亚州季风系统的年际变化可看作是对热带印度到热带太平洋地...  相似文献   

11.
Potential impact of climate change on marine dimethyl sulfide emissions   总被引:1,自引:0,他引:1  
Dimethyl sulfide (DMS) is a biogenic compound produced in sea-surface water and outgased to the atmosphere. Once in the atmosphere, DMS is a significant source of cloud condensation nuclei in the unpolluted marine atmosphere. It has been postulated that climate may be partly modulated by variations in DMS production through a DMS-cloud condensation nuclei-albedo feedback. We present here a modelled estimation of the response of DMS sea-water concentrations and DMS fluxes to climate change, following previous work on marine DMS modeling ( Aumont et al., 2002 ) and on the global warming impact on marine biology ( Bopp et al., 2001 ). An atmosphere–ocean general circulation model (GCM) was coupled to a marine biogeochemical scheme and used without flux correction to simulate climate response to increased greenhouse gases (a 1% increase per year in atmospheric CO2 until it has doubled). The predicted global distribution of DMS at  1 × CO2  compares reasonably well with observations; however, in the high latitudes, very elevated concentrations of DMS due to spring and summer blooms of Phaeocystis can not be reproduced. At  2 × CO2  , the model estimates a small increase of global DMS flux to the atmosphere (+2%) but with large spatial heterogeneities (from −15% to +30% for the zonal mean). Mechanisms affecting DMS fluxes are changes in (1) marine biological productivity, (2) relative abundance of phytoplankton species and (3) wind intensity. The mean DMS flux perturbation we simulate represents a small negative feedback on global warming; however, the large regional changes may significantly impact regional temperature and precipitation patterns.  相似文献   

12.
The major components of the marine boundary layer biogeochemical sulfur cycle were measured simultaneously onshore and off the coast of Washington State, U.S.A. during May 1987. Seawater dimethylsulfide (DMS) concentrations on the continental shelf were strongly influenced by coastal upwelling. Concentration further offshore were typical of summer values (2.2 nmol/L) at this latitude. Although seawater DMS concentrations were high on the biologically productive continental shelf (2–12 nmol/L), this region had no measurable effect on atmospheric DMS concentrations. Atmospheric DMS concentrations (0.1–12 nmol/m3), however, were extremely dependent upon wind speed and boundary layer height. Although there appeared to be an appreciable input of non-sea-salt sulfate to the marine boundary layer from the free troposphere, the local flux of DMS from the ocean to the atmosphere was sufficient to balance the remainder of the sulfur budget.  相似文献   

13.
A simultaneous glaciochemical study of methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4 -) has been conducted on the Antarctic plateau (South Pole, Vostok) and in more coastal regions. The objective was to investigate marine sulfur emissions in very remote areas. Firstly, our data suggest that MSA and nss-SO4 present in antarctic ice are mainly marine in origin and that DMS emissions have been significantly modulated by short term (eg. El Nino Southern Oscillation events) as well as long term climatic changes in the past. Secondly, our study of spatial variations of these two sulfur species seems to indicate that the atmosphere of coastal antarctic regions are mainly supplied by local DMS emissions whereas the atmosphere of the high plateau is also influenced by DMS emissions from more temperate marine latitudes. Thirdly, our study of the partitioning between MSA and nss-SO4 suggest that the temperature could have been an important parameter controlling the final composition of the high southern latitude atmosphere over the last climatic cycle; colder temperature favoring the formation of MSA. However, our data also support a possible role played by changes in the transport pattern of marine air to the high antarctic plateau.  相似文献   

14.
Dimethylsulphide (DMS) is an important sulphur‐containing trace gas produced by enzymatic cleavage of its precursor compound, dimethylsulphoniopropionate (DMSP), which is released by marine phytoplankton in the upper ocean. After ventilation to the atmosphere, DMS is oxidised to form sulphate aerosols which in the unpolluted marine atmosphere are a major source of cloud condensation nuclei (CCN). Because the micro‐physical properties of clouds relevant to climate change are sensitive to CCN concentration in air, it has been postulated that marine sulphur emissions may play a rôle in climate regulation. The Subantarctic Southern Ocean (41–53°S) is relatively free of anthropogenic sulphur emissions, thus sulphate aerosols will be mainly derived from the biogenic source of DMS, making it an ideal region in which to evaluate the DMS‐climate regulation hypothesis. We have extended a previous modelling analysis of the DMS cycle in this region by employing a coupled general circulation model (CGCM) which has been run in transient mode to provide a more realistic climate scenario. The CGCM output provided meteorological data under the IPCC/IS92a radiative forcing scenario. A DMS production model has been forced with the CGCM climate data to simulate the trend in the sea‐to‐air DMS flux for the period 1960 to 2080, corresponding to equivalent CO2 tripling relative to pre‐industrial levels. The results confirm a minor but non‐negligible increase in DMS flux in this region, in the range +1% to +6% predicted over the period simulated. Uncertainty analysis of the DMS model predictions have confirmed the positive sign for the change in DMS flux, that is a negative DMS feedback on warming.  相似文献   

15.
The Pacific Atmospheric Sulfur Experiment (PASE) was a comprehensive airborne study of the chemistry and dynamics of the tropical trade wind regime (TWR) east of the island of Kiritibati (Christmas Island, 157º, 20?? W, 2º 52?? N). Christmas Island is located due south of Hawaii. Geographically it is in the northern hemisphere yet it is 6?C12º south of the intertropical convergence zone (ITCZ) which places it in the southern hemisphere meteorologically. Christmas Island trade winds in August and September are from east south east at 3?C15 ms?1. Clouds, if present, are fair weather cumulus located in the middle layer of the TWR which is frequently labeled the buffer layer (BuL). PASE provided clear support for the idea that small particles (80 nm) were subsiding into the tropical trade wind regime (TWR) where sulfur chemistry transformed them to larger particles. Sulfur chemistry promoted the growth of some of these particles until they were large enough to activate to cloud drops. This process, promoted by sulfur chemistry, can produce a cooling effect due to the increase in cloud droplet density and changes in cloud droplet size. These increases in particle size observed in PASE promote additional cooling due to direct scattering from the aerosol. These potential impacts on the radiation balance in the TWR are enhanced by the high solar irradiance and ocean albedo of the TWR. Finally because of the large area involved there is a large factional impact on earth??s radiation budget. The TWR region near Christmas Island appears to be similar to the TWR that persists in August and September, from southwest of the Galapagos to at least Christmas Island. Transport in the TWR between the Galapagos and Christmas involves very little precipitation which could have removed the aerosol thus explaining at least in part the high concentrations of CCN (??300 at 0.5% supersaturation) observed in PASE. As expected the chemistry of sulfur in the trade winds was found to be initiated by the emission of DMS into the convective boundary layer (BL, the lowest of three layers). However, the efficiency with which this DMS is converted to SO2 has been brought into further question by this study. This unusual result has come about as result of our using two totally different approaches for addressing this long standing question. In the first approach, based on accepted kinetic rate constants and detailed steps for the oxidation of DMS reflecting detailed laboratory studies, a DMS to SO2 conversion efficiency of 60?C73% was determined. This range of values lies well within the uncertainties of previous studies. However, using a completely different approach, involving a budget analysis, a conversion value of 100% was estimated. The latter value, to be consistent with all other sulfur studies, requires the existence of a completely independent sulfur source which would emit into the atmosphere at a source strength approximately half that measured for DMS under tropical Pacific conditions. At this time, however, there is no credible scientific observation that identifies what this source might be. Thus, the current study has opened for future scientific investigation the major question: is there yet another major tropical marine source of sulfur? Of equal importance, then, is the related question, is our global sulfur budget significantly in error due to the existence of an unknown marine source of sulfur? Pivotal to both questions may be gaining greater insight about the intermediate DMS oxidation species, DMSO, for which rather unusual measurements have been reported in previous marine sulfur studies. The 3 pptv bromine deficit observed in PASE must be lost over the lifetime of the aerosol which is a few days. This observation suggests that the primary BrO production rate is very small. However, considering the uncertainties in these observations and the possible importance of secondary production of bromine radicals through aerosol surface reactions, to completely rule out the importance of bromine chemistry under tropical conditions at this time cannot be justified. This point has been brought into focus from prior work that even at levels of 1 pptv, the effect of BrO oxidation on DMS can still be quite significant. Thus, as in the case of DMS conversion to SO2, future studies will be needed. In the latter case there will need to be a specific focus on halogen chemistry. Such studies clearly must involve specific measurements of radical species such as BrO.  相似文献   

16.
Abstract

Dimethylsulfoxide (DMSO) is an ubiquitous, albeit poorly understood, component of the marine sulfur cycle. Conventionally, the accepted formation pathways are the photochemical and microbial oxidation of dimethylsulfide (DMS). The principal loss mechanism is thought to be via microbial transformation, either consumption or reduction to DMS. The interactions between DMSO and DMS are likely to be important in controlling sea surface concentrations of DMS, and thus DMSO could influence the role played by DMS in global climate regulation. This review examines current knowledge of the distribution of DMSO in aquatic environments and the possible link between DMSO, DMS and global climate control. Mechanisms for the formation and loss of DMSO are also considered in addition to some of the factors influencing these processes. The review also considers that DMSO may be biosynthesized by phytoplankton, representing a non‐DMS source for DMSO, and that DMSO can undergo photochemical oxidation, a potential loss mechanism for DMSO in the marine environment.  相似文献   

17.
Measurements of atmospheric dimethylsulfide (DMS) and its oxidation products, sulfur dioxide (SO2), methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4 2-) were monitored during the period June 9–26, 1989 at a coastal site in Brittany. As indicated by the radon (Rn-222) activities and the high concentrations of NOx the air masses, for most of the experiment, were continental in origin. The observed concentrations range from 1.9 to 65 nmol/m3 for DMS (n=157), 0.6 to 94.2 nmol/m3 for SO2 (n=50), 0.6 to 11.6 nmol/m3 for MSA (n=44) and 42 to 350 nmol/m3 for nss-SO4 2- (n=44). Aitken nuclei reached values as high as 4.5 × 105 particles/m3. When continental conditions predominated, the measured SO2 concentrations were lower than those expected from a consideration of the observed DMS concentrations and the existence of SO2 background of the continental air masses. Similarly, compared to the MSA/DMS ratio in the marine atmosphere, higher concentrations of MSA were observed than those expected from the measured levels of DMS. The presence of enhanced levels of MSA was also endorsed by the observation that the measured mean MSA/nss-SO4 2- ratio of 6±3% was similar to the mean value of 6.9% observed in the marine atmosphere. These above observations are in line with recent laboratory findings by Barnes et al. (1988), which show an increase of the MSA/DMS yield with a simultaneous decrease of the SO2/DMS yield in the presence of NOx.  相似文献   

18.
Simultaneous measurements of rain acidity and dimethyl sulfide (DMS) at the ocean surface and in the atmosphere were performed at Amsterdam Island over a 4 year period. During the last 2 years, measurements of sulfur dioxide (SO2) in the atmosphere and of methane sulfonic acid (MSA) and non-sea-salt-sulfate (nss-SO4 2-) in rainwater were also performed. Covariations are observed between the oceanic and atmospheric DMS concentrations, atmospheric SO2 concentrations, wet deposition of MSA, nss-SO4 2-, and rain acidity. A comparable summer to winter ratio of DMS and SO2 in the atmosphere and MSA in precipitation were also observed. From the chemical composition of precipitation we estimate that DMS oxidation products contribute approximately 40% of the rain acidity. If we consider the acidity in excess, then DMS oxidation products contribute about 55%.  相似文献   

19.
The atmospheric sulfur cycle of the remote Arctic marine boundary layer is studied using trajectories and measurements of sulfur compounds from the International Arctic Ocean Expedition 1991, along with a pseudo-Lagrangian approach and an analytical model. The dimethyl sulfide [DMS(g)] turnover time was  h. Only  % of DMS(g) followed reaction paths to sulfur dioxide [SO2(g)], sub-micrometre aerosol non-seasalt sulfate (nss-SO42−) or methane sulfonate (MSA). During the first 3 d of transport over the pack ice, fog deposition and drizzle resulted in short turnover times;  h for SO2(g),  h for MSA and  h for nss-SO42−. Therefore, DMS(g) will, owing to its origin along or south of the ice edge and longer turnover time, survive the original sub-micrometre sulfur aerosol mass and gradually replace it with new biogenic sulfur aerosol mass. The advection of DMS(g) along with heat and moisture will influence the clouds and fogs over the Arctic pack ice through the formation of cloud condensation nuclei (CCN). If the pack ice cover were to decrease owing to a climate change, the total Arctic Ocean DMS production would change, and potentially there could be an ice–DMS–cloud–albedo climate feedback effect, but it would be accompanied by changes in the fog aerosol sink.  相似文献   

20.
A kinetic model for the OH-initiated homogeneous gas phase oxidation of dimethylsulfide (DMS) in the atmosphere (Saltelli and Hjorth, 1995), has been extended here to include the liquid phase chemistry. The updated model has then been employed to predict the temperature dependency of the MSA/nss-SO42- ratio. Model predictions have been compared with observational data reported in Bates et al. (1992). Sensitivity and uncertainty analysis has been performed in a Monte Carlo fashion to identify which are the important uncertainties on the input parameters and which are the possible combinations of parameter values that could explain the field observations. Results of the analysis have indicated that the temperature dependencies of the interactions between gas phase and liquid phase chemistry may to a large extent explain the observed T-dependence of the MSA/nss- SO42- ratio. The potential role of multi-phase atmospheric chemistry, not only in the case of SO2 but also of other oxidation products of DMS and, particularly, of DMS itself, has been highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号