首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
五子骑龙矿床——被改造的斑岩铜矿上部带   总被引:8,自引:1,他引:8  
五子骑龙矿床产于紫金山矿田的一个早白垩世火山管道旁侧。火山管道中充填的英安斑岩向深部逐渐相变为花岗闪长斑岩。由于后期断裂的破坏,该花岗闪长斑岩及其矿化系统被上冲到与五子骑龙矿床相邻的中寮矿床近地表位置,从而形成斑岩型铜矿床-中寮矿床。五子骑龙矿床中,环绕英安斑岩发育明矾石化、迪开石化、埃洛石化和红柱石化蚀变,这些蚀变是改造并叠加早期绢英岩化蚀变的结果。其铜矿石中的铜蓝、硫砷铜矿和蓝辉铜矿,也经常交  相似文献   

2.
The North Fork porphyry copper deposit in the Cascade volcanic arc of Washington displays copper mineralization confined to the potassic (biotite) and phyllic (sericite) alteration zones. No secondary potassium feldspars have been found in either alteration zone; moreover, chemical analyses indicate the potassic alteration zone contains a low K2O content. Argillic and propylitic zones are also recognized, but these are barren of hypogene copper mineralization. Biotite-chalcopyrite intergrowths in the deposit have been given a 9.9 K-Ar age. Thus it is not only one of the youngest deposits dated in the western Cordillera, but it is associated with a volcanic arc which has no current Benioff zone seismic array or accompanying trench. The deposit appears to have developed during the period when coupling of the North American and Juan de Fuca plates probably inhibited subduction under the Cascade volcanic arc.  相似文献   

3.
The Miduk porphyry copper deposit is located in Kerman province, 85 km northwest of the Sar Cheshmeh porphyry copper deposit, Iran. The deposit is hosted by Eocene volcanic rocks of andesitic–basaltic composition. The porphyry‐type mineralization is associated with two Miocene calc‐alkaline intrusive phases (P1 and P2, respectively). Five hypogene alteration zones are distinguished at the Miduk deposit, including magnetite‐rich potassic, potassic, potassic–phyllic, phyllic and propylitic. Mineralization occurs as stockwork, dissemination and nine generations (magnetite, quartz–magnetite, barren quartz, quartz‐magnetite‐chalcopyrite‐anhydrite, chalcopyrite–anhydrite, quartz‐chalcopyrite‐anhydrite‐pyrite, quartz‐molybdenite‐anhydrite ± chalcopyrite ± magnetite, pyrite, and quartz‐pyrite‐anhydrite ± sericite) of veinlets and veins. Early stages of mineralization consist of magnetite rich veins in the deepest part of the deposit and the main stage of mineralization contains chalcopyrite, magnetite and anhydrite in the potassic zone. The high intensity of mineralization is associated with P2 porphyry (Miduk porphyry). Based on petrography, mineralogy, alteration halos and geochemistry, the Miduk porphyry copper deposit is similar to those of continental arc setting porphyry copper deposits. The Re‐Os molybdenite dates provide the timing of sulfide mineralization at 12.23 ± 0.07 Ma, coincident with U/Pb zircon ages of the P2 porphyry. This evidence indicates a direct genetic relationship between the Miduk porphyry stock and molybdenite mineralization. The Re‐Os age of the Miduk deposit marks the main stage of magmatism and porphyry copper formation in the Central Iranian volcano‐plutonic belt.  相似文献   

4.
The Kahang porphyry Cu deposit, located northeast of Isfahan city in central of Iran, is associated with a composite Miocene stock and ranges in composition from diorite through granodiorite to quartz-monzonite. Field observations and petrographic studies show that the emplacement of the Kahang stock occurred in several pulses, each associated with its related hydrothermal activity. Early hydrothermal alteration started with a potassic style in the central part of the system and produced a secondary biotite–K-feldspar–magnetite assemblage accompanied by chalcopyrite and pyrite mineralization. Propylitic alteration that took place at the same time as the potassic alteration occurred in the peripheral portions of the stock. Subsequent phyllic alteration overprinted earlier potassic and propylitic alterations. Biotite grains from the potassic and phyllic zones show distinct chemical compositions. The FeO, TiO2, MnO, K2O, and Na2O concentrations in biotite from the phyllic alteration zone are lower than those from the potassic alteration zone. The F and Cl contents of biotite from the potassic alteration zone display relatively high positive correlation with the XMg. The fluorine intercept values [IV(F)] from the potassic and phyllic alteration zones are strongly correlated with the fluorine/chlorine intercept values [IV(F/Cl)]. Biotite geothermometry for the potassic and phyllic alteration zones, based on the biotite geothermometer of Beane (1974), yields a temperature range of 422° to 437 °C (mean = 430 °C) and 329° to 336 °C (mean = 333 °C), respectively. The position of data in log (XF/XOH) ratio vs. XMg and XFe diagram suggests that biotite formed under dissimilar composition and temperature conditions in the potassic and phyllic alteration zones. Calculated log fugacity ratios of (fH2O/fHF), (fH2O/fHCl), and (fHF/fHCl) show that hydrothermal fluids associated with the potassic alteration were distinctively different from those fluids associated with the phyllic alteration zone at Kahang porphyry Cu deposit. The results of this research indicate that the chemistry of biotite is related to the chemical composition of the magma and the prevailing physical conditions during crystallization.  相似文献   

5.
岗讲铜-钼矿床位于冈底斯中段尼木矿田之中,是近年新发现的一个储量在大型以上的典型斑岩型铜-钼矿床。含矿岩体为复式岩体,其中铜、钼矿化主要产于黑云石英二长岩、石英二长斑岩和流纹-英安斑岩之中。热液蚀变类型有钾化、硅化、绢英岩化、绿泥石化和局部泥化,从岩体中心向外主要发育钾化带和绢英岩化带。矿体主要分布在钾化带与绢英岩化带叠加部位,矿区次生氧化富集带也比较发育。文中利用二次离子探针质谱(SIMS)对主要含矿岩体进行了锆石U-Pb定年研究,获得黑云石英二长岩和流纹-英安斑岩的结晶年龄分别为(14.73±0.13)Ma(MSWD=1.3,N=16)和(12.01±0.29)Ma(MSWD=2.3,N=8),与尼木矿田其他斑岩铜(钼)矿床含矿斑岩体的形成年龄基本一致,表明岗讲铜-钼矿床形成于印度-欧亚大陆板块碰撞后的伸展阶段。鉴于矿区缺失青磐岩化带,且钾化带主体已出露地表,因此该区的剥蚀深度至少应该在2~3 km,这与结合青藏高原的剥蚀速率(0.13~0.23mm/a)估算的剥蚀深度一致。  相似文献   

6.
An accurate estimation of mineral grades in ore deposits with heterogeneous spatial variations requires defining geological domains that differentiate the types of mineralogy, alteration and lithology. Deterministic models define the layout of the domains based on the interpretation of the drill holes and do not take into account the uncertainty in areas with fewer data. Plurigaussian simulation (PGS) can be an alternative to generate multiple numerical models of the ore body, with the aim of assessing the uncertainty in the domain boundaries and improving the geological controls in the characterization of quantitative attributes. This study addresses the application of PGS to Sungun porphyry copper deposit (Iran), in order to simulate the layout of four hypogene alteration zones: potassic, phyllic, propylitic and argillic. The aim of this study is to construct numerical models in which the alteration structures reflect the evolution observed in the geology.  相似文献   

7.
《International Geology Review》2012,54(12):1353-1368
Copper and gold mineralization in the Maher-Abad area, eastern Iran, is closely related to multiple episodes of emplacement of a late Eocene granodiorite into a quartz-monzonitic stock and andesitic volcaniclastic rocks. Hypogene and supergene porphyry Cu–Au mineralization occurred within the porphyritic granodiorite and quartz-monzonite host rocks extensively altered into dominantly potassic, propylitic, phyllic, and argillic assemblages. Temperature and pressure estimates using the plagioclase–hornblende thermometer and Al-in-hornblende barometer indicate that the granodiorite intruded at 758 ± 10°C and 1.4 ± 0.2 kbar.

Biotites from the alteration zones have more variable AlIV than those in the fresh granodiorite, but nearly all are close to the ideal phlogopite composition. Biotite compositions display an increase in Al2O3, FeO, TiO2, and Cl, but a decrease in SiO2 and F, from the porphyritic granodiorite and potassic to the transitional phyllic alteration zones. Biotite from the potassic zone (X phl?=?0.63–0.67) possesses a moderate F content (0.53 to 0.82 wt.%) that is significantly higher than that in the phyllic zone (0.22 to 0.38 wt.%), exhibiting a positive correlation with X Mg and negative correlation with Cl.

With a decrease in the temperature, log (fH2O/fHF) and log (fH2O/fHCl) values calculated for fluids equilibrated with biotite increase progressively from the granodiorite through the potassic to the phyllic zones, whereas log (fHF/fHCl) shifts towards more negative values. Fugacity ratio trends in the Maher-Abad porphyry copper deposit are quite similar to those of other porphyry copper systems. The decrease in halogen content of hydrothermal fluids towards outer parts of the deposits reflects an increase in the degree of mixing between magmatic fluid and meteoric water.  相似文献   

8.
《Ore Geology Reviews》2011,39(4):367-381
The giant Sarcheshmeh porphyry Copper deposit is located 65 km southwest of Kerman City, southeastern Iran. Numerous Miocene porphyry stocks and dykes intruded thick sequences of Upper Cretaceous sedimentary and Eocene volcanic rocks. Hypogene and supergene porphyry Cu mineralization occurs within the granodioritic porphyry and host rock sequence, which was extensively altered to a dominantly potassic, phyllic, and argillic assemblage with interstitial to distal propylitic types.Biotite-bearing assemblages occur as both primary phenocrysts and secondary replacements showing variable size, colour, and shape. Fluorine contents (0.22 to 1.33 wt.%) and XMg (0.54 to 0.71) in biotites from the potassic and phyllic zones are higher than those of non-mineralized granitoids (F = 0.09 to 0.56 wt.%, XMg = 0.43 to 0.54), whereas their Cl contents (Cl = 0.05 to 0.24 wt.%) are lower than those of the non-mineralized granitoids (Cl = .0.11 to 0.45). The biotites from the phyllic zone have higher log (fH2O/fHF) and log (fH2O/fHCl) values than those of the potassic zone, as well as the granitoid and andesitic dykes. The log (fHF/fHCl) values determined for the granitoid, potassic and phyllic zones are similar, though more negative than those of the andesitic dykes. The log (fHF/fHCl) values have a similar range for biotite from the granitoid, and potassic and phyllic zones. The halogen fugacity ratios established for fluids associated with the Sarcheshmeh deposit from their F and Cl contents in biotite show that the granitoid, potassic zone and phyllic zone are increasingly affected by meteoric waters. The fluids that circulated in the phyllic zone are predominantly of meteoric origin, possibly overprinting original phyllic zone halogen contents.The Cl intercept values of biotite in the granitoid, and phyllic and potassic are similar to other ore-forming systems and tend to be more Cl-rich than Cl-intercept values of biotites in common igneous rocks. Calculated F/Cl intercept values for biotite in the granitoid and potassic zone are also consistent with many other porphyry copper forming systems.  相似文献   

9.
西藏波龙斑岩铜金矿床是新近在青藏高原中部发现的规模最大的斑岩型矿床。文章对该矿床内的蚀变钾长石和蚀变绢云母进行了40Ar/39Ar年代学测试,获得蚀变钾长石的40Ar/39Ar坪年龄为(118.33±0.60) Ma,反等时线年龄为(118.49±0.74) Ma (初始40Ar/36Ar=286.1±8.4),表明波龙斑岩铜金矿床的钾化蚀变年龄为118~119 Ma;蚀变绢云母的40Ar/39Ar坪年龄为(121.61±0.67) Ma,反等时线年龄为(121.1±2.0) Ma (初始40Ar/36Ar=279±19)。由于蚀变绢云母测试样品内可能混入了斜长石,受其影响,蚀变绢云母测年结果的下限可能代表了该矿床绢英岩化蚀变年龄。这些蚀变钾长石和蚀变绢云母40Ar/39Ar测年结果与波龙矿床的成岩年龄值和成矿年龄值在误差范围内基本一致,表明该矿床的钾化和绢英岩化与成岩、成矿同期,该矿床的岩浆-热液活动过程的时限为121~118 Ma。  相似文献   

10.
位于青藏高原东缘的玉龙铜矿是我国最大的斑岩铜矿之一,其形成一致认为与矿区中心产出的二长花岗质复式斑岩体有关,但成矿与复式岩体的确切关系并不清楚。本文通过详细的野外地质填图,特别是矿床8号勘探线12个钻孔的重新编录,在复式岩体中识别出一套花岗斑岩岩枝,岩枝中不规则状石英-钾长石脉广泛发育,同时还见有单向固结结构、粗晶及细晶结构,这些特征表明该岩浆中的流体曾经发生过饱和。同时结合矿床高品位(0.6%,质量分数)铜矿化紧密围绕花岗斑岩分布、含矿脉体自花岗斑岩向外围逐渐由高温石英-钾长石A脉过渡为中低温石英-硫化物脉、热液蚀变自花岗斑岩向外由高温钾硅酸盐化过渡为中低温石英-绢云母化的规律,最终确定这套花岗斑岩为玉龙矿床的成矿斑岩。玉龙铜矿成矿斑岩的厘定,较好地解释了矿床矿化类型及金属的分布规律,为进一步深入理解矿床形成过程提供了帮助。  相似文献   

11.
The Bolong porphyry Cu–Au deposit is a newly discovered deposit in the central Tibetan Plateau, and is ranked as the second largest copper deposit discovered to date in the Bangong‐Nujiang metallogenic belt in China. Three granodiorite porphyry phases occur within the Bolong porphyry Cu–Au deposit. Phyllic alteration is widespread on the surface of the deposit, and potassic alteration occurs at depth, associated with granodiorite porphyries. The copper and gold mineralization is clearly related to the potassic and phyllic alteration. Multiple chronometers were applied to constrain the timing of magmatic–hydrothermal activity at the Bolong deposit. Zircon U–Pb geochronology reveals that the granodiorite porphyry phases were emplaced at ca. 120 Ma. Re–Os data of four molybdenite samples from quartz–molybednite veinlets yielded an isochron age of 119.4 ± 1.3 Ma. The plateau age of hydrothermal K‐feldspar from the potassic alteration zone, analyzed by 40Ar/39Ar dating, is 118.3 ± 0.6 Ma, with a similar reverse isochron age of 118.5 ± 0.7 Ma. Therefore, the magmatic–hydrothermal activity occurred at ca. 120–118 Ma, which is similar in age to the neighboring Duobuza porphyry copper deposit. The period of 120–118 Ma is therefore important for the development of porphyry Cu–Au mineralization in the central Tibetan Plateau, and these porphyry deposits were formed during the final stages of the northward subduction of the Neo‐Tethys Ocean.  相似文献   

12.
The Daraloo field is located in the southeast of Iran (Kerman province). It is associated with Oligomiocene diorite/granodiorite to quartz monzonite stocks. Copper mineralization is basically relevant to potassic and phyllic alteration zones. Petrographic and geologic studies imply that mineralization is restricted to two major parts locating in the center and east of district. The larger central mineralization has a northwest–southeast trend perpendicular to the smaller one. Hydrothermal ore fluid formation occurred in relatively deep levels thereafter faulting and fracturing provided appropriate conduits to ascend fluids through shallower depths. Early hydrothermal alteration produced a confined potassic assemblage in the central and eastern parts of the stock. Two main fluid inclusion groups in relationship with alteration ore fluids have been identified. They are liquid-rich inclusions containing solid phases, with high temperatures (257°C to 554°C) and high salinities (31 to 67 wt.% NaCl equiv.), and vapor-rich inclusions with high temperatures and low salinities without any solid phases. These magmatic source fluids are responsible for boiling and also potassic and phyllic alteration zone. They also resulted in the formation of quartz groups I and II veins and chalcopyrite deposition. Propylitic alteration is attributed to a Ca-rich meteoric fluid. Inclusions originated from this fluid are liquid-rich having low temperatures (161°C to 269°C) and low salinities (1 to 13 wt.% NaCl). Mixing descending meteoric water with magmatic fluids reduces considerably the salinity of magmatic fluid. Mixing is also the impetus of leaching copper from potassic to the phyllic zone. It is possible to conclude that all these procedures are controlled by the main faults of district having NW–SE trend. Two fundamental events affecting the mineralization are cooling ore-bearing fluids and magnetite (±pyrite) emplacement. The latter one is formed in potassic and phyllic alteration zone in which copper-bearing fluids have interaction with magnetite minerals and so chalcopyrite minerals have been formed nearby magnetites. Temperature and pressure of hydrothermal fluid differentiation could be applied as a predictive tool to discriminate between barren and productive copper porphyry deposits. A simple comparison of temperature and pressure variations between Daraloo deposit and other copper porphyry deposits located in the same belt of Iran (Sahand-Bazman belt) illuminates that Daraloo system has high range of pressure implying deeper exsolution of hydrothermal fluid. On the other hand, economic mineralization has direct relationship with temperature range of orthomagmatic fluids so that if a deposit has a wide range of high temperature fluids, it could be inferred as a barren deposit. In conclusion, it could be inferred that Daraloo district can be categorized as a sub-economic porphyry deposit. On the other hand, restricted formation of chalcopyrite and the other copper-bearing minerals besides large amounts of magnetite and pyrite can approve obviously the low grade of mineralization in Daraloo district.  相似文献   

13.
巴达铜金矿位于藏东富碱斑岩带南段,是藏东地区近年来新发现的大型铜金矿。虽然对巴达铜金矿开展了大量勘查工作,但对该矿床的成因尚未取得共识。本文基于详细的野外调研、岩心与坑道编录及系统的镜下鉴定,对巴达铜金矿床地质特征进行研究。巴达矿床主要产于石英二长斑岩中,局部产于斑岩和砂岩地层的接触带内。矿床发育的围岩蚀变主要为青磐岩化、钾化、绢英岩化,高岭土化、蛋白石化、蒙脱石化次之,蚀变分带从内向外依次为钾硅酸盐化带、绢英岩化带、青磐岩化带、高岭土化带,铜金矿体主要赋存于钾硅酸盐化和绢英岩化带内,铜矿化主要以黄铜矿形式产出,金矿化主要以银金矿形式产于白云石±石英+细粒黄铁矿±黄铜矿脉中,铜矿化与金矿化呈正相关,矿体的产出受北西向逆冲断层的控制。与典型斑岩和浅成低温热液矿床不同,巴达铜金矿化主要产于白云石±石英+黄铁矿脉中;矿床内既发育碳酸盐、伊利石、绢云母和黄铁矿、黄铜矿、方铅矿、黝铜矿、低FeS闪锌矿等一套中硫型浅成低温热液矿床的蚀变矿物组合,又发育符合碱性斑岩系统的特征矿物赤铁矿。基于以上特征判断,巴达铜金矿矿床成因类型应为与富碱斑岩有关的浅成低温热液矿床,巴达铜金矿矿床成因的厘定,为下一步找矿提供了理论指导。  相似文献   

14.
土屋斑岩铜矿床位于新疆东天山晚古生代大南湖-头苏泉岛弧中.矿区出露地层为石炭系企鹅山群火山-沉积岩.文章提出矿区出露的火山-沉积岩以及浅成侵入岩为一火山-侵入杂岩体,发育2个旋回4个岩相:第一旋回包括溢流相玄武岩和安山岩、爆发相集块角砾熔岩和爆发-沉积相凝灰岩;第二旋回包括次火山相闪长玢岩和玄武玢岩.斜长花岗斑岩侵入到火山机构断裂系中.矿体赋存于斜长花岗斑岩和闪长玢岩中.斜长花岗斑岩为成矿斑岩,次火山岩相闪长玢岩为容矿岩石,火山岩为围岩.土屋斑岩铜矿床可分为前成矿期和主成矿期.前成矿期形成于火山活动的晚期,发育青磐岩化;主成矿期形成于斜长花岗斑岩侵位时期,发育钾硅酸盐蚀变、绿泥石-绢云母蚀变和黄铁绢英岩化蚀变及与之有关的矿化,形成了土屋斑岩型矿化的主体.矿化阶段包括钾硅酸盐阶段、绿泥石-绢云母阶段和黄铁绢英岩化阶段等.  相似文献   

15.
The Bolcana ore deposit (Metaliferi Mountains, western Romania) is a porphyry ore deposit with associated epithermal veins. On the basis of different parageneses, four alteration types were distinguished: potassic, phyllic, argillic and propylitic. The mineralogical and geochemical data and estimated crystallisation temperatures of alteration minerals indicate an evolution of the system from an early period of porphyry type mineralisation (Cu+Au) to a late period of low-sulphidation epithermal mineralisation (Au+base metal). To cite this article: V. Milu et al., C. R. Geoscience 335 (2003).  相似文献   

16.
代晶晶 《地质与勘探》2013,49(3):505-510
矿物光谱混合模型研究对于蚀变带蚀变矿物的信息提取具有重要意义。本文基于目前两种主流的非线性光谱混合模型Hapke和Shkuratov模型,通过对两者特性的对比分析,提出了一种综合利用这两种模型进行矿物或岩石光谱混合模拟的思路,并针对斑岩型铜矿典型蚀变分带现象,进行钾化带、绢英岩化带、泥化带、青磐岩化带等典型蚀变带矿物组合光谱的模拟实验。本研究提取结果可以为斑岩铜矿蚀变带研究提供理论依据。  相似文献   

17.
新疆延东斑岩铜矿床火山机构、容矿岩石及热液蚀变   总被引:5,自引:1,他引:4  
延东斑岩铜矿床位于新疆东天山晚古生代大南湖岛弧中。延东矿区出露地层是石炭纪企鹅山组火山-沉积岩,我们研究提出延东矿区出露的火山-沉积岩以及浅成侵入岩为石炭纪火山喷发-岩浆侵入产物,并将其划分成两个旋回五个岩相:第一旋回包括溢流相(玄武岩和安山岩)、爆发相(集块角砾熔岩)和爆发-沉积相(凝灰岩);第二旋回包括次火山相(闪长玢岩和闪长岩)和浅成侵入相(斜长花岗斑岩)。容矿岩石是次火山相的闪长玢岩和闪长岩以及浅成侵入相的斜长花岗斑岩。闪长玢岩发育中性斑岩蚀变系统,包括内部的绢云母-绿泥石蚀变带和绿泥石-绢云母蚀变带和外围的青磐岩化带,其中绢云母-绿泥石蚀变带控制本区部分富矿体的形成和分布;斜长花岗斑岩发育酸性斑岩蚀变系统,从中心向外依次为黄铁绢英岩化带、强绢云母化带和弱绢云母化带,黄铁绢英岩化带控制本区部分富矿体的形成和分布。这两个蚀变系统以钾硅酸盐化蚀变不发育和绢云母化广泛发育为特点。  相似文献   

18.
云南普朗斑岩铜矿蚀变带成矿流体特征及其成矿意义   总被引:7,自引:2,他引:5  
云南普朗铜矿位于义敦—中甸岛弧带南缘,是近年来我国发现的一个大中型斑岩铜矿床。该矿床具有典型的斑岩铜矿蚀变分带,由中心向外依次为钾硅化带、绢英岩化带、青盘岩化带。对矿区不同蚀变带中的石英流体包裹体进行了岩相学观察、均一温度测量和激光拉曼探针成分分析。均一温度测量结果表明,从普朗斑岩铜矿床钾硅化带到绢英岩化带再到青盘岩化带,成矿流体的平均均一温度从274.4℃到236.4℃再到203.0℃,呈明显下降趋势,可能与天水参与成矿有关。同时,激光拉曼探针成分分析结果表明,普朗斑岩铜矿床矿化期间的成矿流体属于富硫富氯流体,这种温度较高且富硫富氯的成矿流体在钾硅化带和绢英岩化带发生矿化作用将导致成矿物质强烈富集成矿。  相似文献   

19.
The Rosia Poieni deposit is the largest porphyry copper deposit in the Apuseni Mountains, Romania. Hydrothermal alteration and mineralization are related to the Middle Miocene emplacement of a subvolcanic body, the Fundoaia microdiorite. Zonation of the alteration associated with the porphyry copper deposit is recognized from the deep and central part of the porphyritic intrusion towards shallower and outer portions. Four alteration types have been distinguished: potassic, phyllic, advanced argillic, and propylitic. Potassic alteration affects mainly the Fundoaia subvolcanic body. The andesitic host rocks are altered only in the immediate contact zone with the Fundoaia intrusion. Mg-biotite and K-feldspar are the main alteration minerals of the potassic assemblage, accompanied by ubiquitous quartz; chlorite, and anhydrite are also present. Magnetite, pyrite, chalcopyrite and minor bornite, are associated with this alteration. Phyllic alteration has overprinted the margin of the potassic zone, and formed peripheral to it. It is characterized by the replacement of almost all early minerals by abundant quartz, phengite, illite, variable amounts of illite-smectite mixed-layer minerals, minor smectite, and kaolinite. Pyrite is abundant and represents the main sulfide in this alteration zone. Advanced argillic alteration affects the upper part of the volcanic structure. The mineral assemblage comprises alunite, kaolinite, dickite, pyrophyllite, diaspore, aluminium-phosphate-sulphate minerals (woodhouseite-svanbergite series), zunyite, minamyite, pyrite, and enargite (luzonite). Alunite forms well-developed crystals. Veins with enargite (luzonite) and pyrite in a gangue of quartz, pyrophyllite and diaspore, are present within and around the subvolcanic intrusion. This alteration type is partially controlled by fractures. A zonal distribution of alteration minerals is observed from the centre of fractures outwards with: (1) vuggy quartz; (2) quartz + alunite; (3) quartz + kaolinite ± alunite and, in the deeper part of the argillic zone, quartz + pyrophyllite + diaspore; (4) illite + illite-smectite mixed-layer minerals ± kaolinite ± alunite, and e) chlorite + albite + epidote. Propylitic alteration is present distal to all other alteration types and consists of chlorite, epidote, albite, and carbonates. Mineral parageneses, mineral stability fields, and alteration mineral geothermometers indicate that the different alteration assemblages are the result of changes in both fluid composition and temperature of the system. The alteration minerals reflect cooling of the hydrothermal system from >400 °C (biotite), to 300–200 °C (chlorite and illite in veinlets) and to lower temperatures of kaolinite, illite-smectite mixed layers, and smectite crystallization. Hydrothermal alteration started with an extensive potassic zone in the central part of the system that passed laterally to the propylitic zone. It was followed by phyllic overprint of the early-altered rocks. Nearly barren advanced argillic alteration subsequently superimposed the upper levels of the porphyry copper alteration zones. The close spatial association between porphyry mineralization and advanced argillic alteration suggests that they are genetically part of the same magmatic-hydrothermal system that includes a porphyry intrusion at depth and an epithermal environment of the advanced argillic type near the surface.Editorial handling: B. Lehmann  相似文献   

20.
西藏多不杂斑岩铜金矿是近年来新发现的一个矿床,位于班公湖—怒江成矿带西段。多不杂矿床由内向外发育钾化、绢英岩化、青磐岩化,钾化主要发育于花岗闪长斑岩出露区域,绢英岩化环绕钾化带发育,并叠加在钾化带之上,青磐岩化在矿床西侧呈团块状发育。本文阐述了钻孔中Cu品位趋势线与多不杂矿床有序分带的关系,进一步说明了钾化带与矿体存在密切对应关系。通过黄铁矿分布趋势与实际矿体对比分析,以及岩石地球物理性质研究,得出含矿花岗闪长斑岩体为中高电阻率、极化率的初步结论,然后在典型矿床进行方法试验和地球化学数据处理,根据推断结果和实际矿体位置,认为矿体主要赋存于中浅部中高电阻率、极化率及磁场梯级带、Cu-As-Sb-Au高背景区域,进一步完善了方法选择,为多不杂斑岩型矿床预测研究提供了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号