首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
宁芜玢岩铁矿磷灰石的稀土元素特征   总被引:12,自引:2,他引:12  
文章分析了宁芜玢岩铁矿 4种产状磷灰石的稀土元素组成 ,并与Kiruna型铁矿和斜长岩、苏长岩及钛铁霞辉岩中磷灰石的稀土元素组成进行了对比。结果表明产地和母岩不同的矿床中 ,它们的磷灰石稀土元素分布型式一致 ,以轻稀土富集和Eu负异常明显为特征 ,属陆相岩浆成因。前 3种产状磷灰石的ΣREE变化于 30 31.48×10 -6~ 12 0 80× 10 -6,第 4种产状磷灰石的ΣREE仅为 195 8× 10 -6,反映岩浆演化到热液的晚期阶段成矿溶液稀土元素含量较低。尽管辉长闪长玢岩与磷灰石的稀土元素分布型式一致 ,但辉长闪长玢岩无Eu异常或有弱Eu正异常 ,代表它们的地幔源区低氧逸度的还原环境 ,或反映氧逸度较高情况下的分离结晶作用。不混溶作用形成的矿浆在冷凝过程中 ,Eu2 + 优先被透辉石捕获 ,使得稍晚结晶的磷灰石产生负Eu异常  相似文献   

2.
梅山铁矿床位于长江中下游成矿带宁芜盆地北段,矿体赋存于辉长闪长玢岩和下白垩统大王山组辉石安山岩的接触带。研究表明,梅山铁矿的石榴石以钙铁榴石为主,为钙铁-钙铝榴石系列,与传统意义矽卡岩矿床的石榴石组成相似;磁铁矿和赤铁矿具有斑岩铜矿和Kiruna型矿床的双重特征;赤铁矿和菱铁矿显示热液交代成因特征,但赤铁矿至少有2个成矿世代。成矿母岩辉长闪长玢岩、磁铁矿及磷灰石具有相似的稀土配分模式,暗示三者具有同源性。辉长闪长玢岩无Eu异常,代表了高氧逸度下岩浆的分离结晶作用;磁铁矿和磷灰石均具有中度负Eu异常,可能是在辉长闪长玢岩发生钠长石化的过程中,Eu以Eu2+形式在钠长石内富集,造成流体Eu亏损,后来生成的磷灰石和磁铁矿继承了流体的Eu含量特征,辉长闪长玢岩的钠长石化导致富Fe2+硅酸盐矿物淋滤铁元素进入流体,为矿床提供了铁物质。  相似文献   

3.
An investigation of the content and distribution of REE in apatite and magnetite in the iron ores of Kiruna type and some other iron ores is presented. REE in apatite and magnetite in different ore types show characteristic patterns which are related to different modes of formation of the ores.The magnetite-apatite iron ores of the world can be divided into two types: (a) Kiruna iron ores proper which occur in volcanic rocks, and (b) iron ores connected with deuteric processes and/or related to intrusive rocks. Apatite of the Kiruna ores proper in Fennoscandia (e.g. Kiirunavaara, Malmberget and Grängesberg) shows a common pattern with 2000–7000 ppm REE, a weak to moderate LREE/HREE fractionation and negative Eu anomalies. In the Kiruna area, apatite of the main, P-poor ores and of the later, hydrothermal-exhalative P-rich ores, have the same REE distribution which indicates a common source. There is a similar REE distribution in magnetite-apatite trachytic-rhyodacitic host rock which confirms a close magmatic relationship. Apatite in phosphorites (such as the Paleoproterozoic Påläng deposit in northern Sweden) has a different composition (< 1000 ppm REE with Ce depletion) which excludes a sedimentary origin of the Kiruna apatite.Apatite in other volcanogenic magnetite-apatite ores outside Fennoscandia differ by a stronger LREE/HREE fractionation and by a medium to large Eu depletion, partly indicating a relationship to alkaline intrusions. The Avnik apatite, Turkey, shows a weak differentiation in combination with a pronounced negative Eu anomaly, indicating provenance from silicic magmatic sources.The REE pattern of apatite in the deuteric-hydrothermal apatite-bearing iron ores is in general similar to that of apatite in the Kiruna iron ores proper. The similarity indicates a common process of formation for both ore types.The apatite-iron ores of the Kiruna type proper were formed by a late-magmatic differentiation. The ores of the Kiruna area are, in similarity with some other magnetite-apatite ores, emplaced along regional fracture-fault lines and close to an older basement. In general the REE pattern of apatite in the different deposits shows an affinity to alkaline or sub-alkaline magmas, indicating a rifting environment. The alkaline, trachytic volcanics hosting the Kiruna ores in northern Sweden are clearly related to an extensional setting where rifting was important. A probable source for this large-scale ore-forming process was partial melting of deep-seated rocks. The ores evolved in an intracontinental setting with magma generation caused by underplating of older crust.The process giving rise to magnetite-apatite ores of the Kiruna type has occurred during the time span from Paleoproterozoic to Tertiary. The Proterozoic ores occur mainly in cratonized areas, whereas the younger ones occur in fold belts. The amount of ore formed in post-Proterozoic time is as large as that formed in Proterozoic time.  相似文献   

4.
The Khanlogh deposit in the Cenozoic Quchan-Sabzevar magmatic belt, NE Iran, is hosted by Oligocene granodioritic rock. The Khanlogh intrusive body is I-type granitoid of the calc-alkaline series. The orebodies are vein, veinlet, massive, and breccia in shape and occur along the fault zones and fractures within the host rock. Ore minerals dominantly comprise magnetite and apatite associated with epidote, clinopyroxene, calcite, quartz, and chlorite. Apatites of the Khanlogh deposit have a high concentration of REE, and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. Magnetites have a high concentration of REE and show weak to moderate LREE/HREE fractionation. They are comparable to the REE patterns in Kiruna-type iron ores and show an affinity to calc-alkaline magmas. The Khanlogh deposit is similar in the aspects of host rock lithology, alteration, mineralogy, and mineral chemistry to the Kiruna-type deposits. Field observations, hydrothermal alteration halos, style of mineralization, and the geochemical characteristics of apatite, magnetite, and host rock indicate that these magnetite veins have hydrothermal origin similar to Cenozoic Kiruna-type deposits within the Tarom subzone, NW Iran, and are not related to silica-iron oxide immiscibility, as are the major Precambrian magnetite deposits in central Iran.  相似文献   

5.
This paper presents abundances of major and trace elements of apatites in granitic rocks associated with different types of ore deposits in Central Kazakhstan on the basis of electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry. Our results demonstrate that the concentrations and ratios of elements in apatites from different granitoid rocks show distinct features, and are sensitive to magma evolution, petrogenetic and metallogenetic processes. Apatites in the rocks associated with Mo‐W deposits have high content of F and MnO, low content of Cl, which may be indicative of sedimentary sources, while apatites from a Pb‐Zn deposit show relatively high content of Cl and low F content, which possibly suggest a high water content. In these apatites, Sr contents decrease, while Mn and Y contents increase with magma evolution. This relationship reflects that these elements in apatites are related with the degree of magmatic differentiation. Four types of REE patterns in apatites are identified. Type 1 character of highest (La/Yb)N in apatites of Aktogai porphyry Cu‐Mo deposit, Sayak‐I skarn Cu deposit and Akzhal skarn Pb‐Zn depposit is likely produced by the crystallization of heavy REE‐enriched minerals. Type 2 character of upward‐convex light REE in apatite of Aktogai porphyries likely results from La‐enriched mineral crystallization. Type 3 feature of Nd depletion in apatites of East Kounrad and Zhanet deposits both from Mo‐W deposits primarily inherits the character of host‐rock. Type 4 apatites of Aktogai deposit and Akshatau W‐Mo deposit with wide range of REE contents may suggest that apatites crystallize under a wide temperature range. Three types of apatite with distinct redox states are identified based on Eu anomaly. The Aktogai apatite with slight negative Eu anomaly displays the most oxidized state of the magma, and the apatites of other samples at Aktogai, East Kounrad and Akzhal with moderate negative Eu anomaly show moderate oxidizing condition of these rocks, while the remaining apatites with strong En anomaly indicate a moderate reductive state of these rocks.  相似文献   

6.
南京梅山铁矿床是宁芜地区典型的玢岩型铁矿床。本次工作在梅山铁矿床主矿体外围及顶部(即"铁矿近矿指示蚀变带")发现了金、铜、钼多金属矿体,这在长江中下游白垩系火山岩盆地中尚属首次。研究表明,金、铜、钼多金属矿化主要赋存在磁铁矿主矿体上部大王山组辉石安山岩或火山碎屑岩中。主量元素地球化学特征显示,辉石安山岩属于低硅、高钾玄武质安山岩,其与辉长闪长玢岩可能来自同一个火山岩浆;稀土元素地球化学研究表明,多金属矿体的δEu正异常明显,与玢岩铁矿的磁铁矿之间存在互补关系,与辉长闪长玢岩有相似的稀土元素配分形式,推测多金属矿化与辉长闪长玢岩有关。流体包裹体研究表明,与金成矿有关的流体包括高温低盐度和中低温低盐度流体2种类型。  相似文献   

7.
The major, trace and rare earth element (REE) composition of Late Archean manganese, ferromanganese and iron ores from the Iron Ore Group (IOG) in Orissa, east India, was examined. Manganese deposits, occurring above the iron formations of the IOG, display massive, rhythmically laminated or botryoidal textures. The ores are composed primarily of iron and manganese, and are low in other major and trace elements such as SiO2, Al2O3, P2O5 and Zr. The total REE concentration is as high as 975 ppm in manganese ores, whereas concentrations as high as 345 ppm and 211 ppm are found in ferromanganese and iron ores, respectively. Heavy REE (HREE) enrichments, negative Ce anomalies and positive Eu anomalies were observed in post‐Archean average shale (PAAS)‐normalized REE patterns of the IOG manganese and ferromanganese ores. The stratiform or stratabound shapes of ore bodies within the shale horizon, and REE geochemistry, suggest that the manganese and ferromanganese ores of the IOG were formed by iron and/or manganese precipitation from a submarine, hydrothermal solution under oxic conditions that occurred as a result of mixing with oxic seawater. While HREE concentrations in the Late Archean manganese and ferromanganese ores in the IOG are slightly less than those of the Phanerozoic ferromanganese ores in Japan, HREE resources in the IOG manganese deposits appear to be two orders of magnitude higher because of the large size of the deposits. Although a reliable, economic concentration technique for HREE from manganese and ferromanganese ores has not yet been developed, those ores could be an important future source of HREE.  相似文献   

8.
白云鄂博铁稀土矿床中稀土元素的分配特点   总被引:1,自引:0,他引:1       下载免费PDF全文
王凯怡 《地质科学》1981,(4):360-367
有关白云鄂博铁稀土矿床中稀土元素的组成特点和赋存形式,我所在六十年代曾作了大量工作,积累了大批数据。本文主要是利用这些数据,对该矿床中的稀土元素特别是其中的Nd、Sm、Eu的分配特点作初步阐述。  相似文献   

9.
辽宁齐大山铁矿元素地球化学特征   总被引:1,自引:0,他引:1  
齐大山铁矿大地构造上属于华北地台辽东台背斜的西部.其铁矿层产于鞍山群樱桃园岩组,含矿建造为砂质泥岩-泥岩建造(阿尔戈马型),变质相为绿片岩相.通过稀土元素地球化学研究,铁矿石表现为轻稀土富集,LREE/HREE比值平均为3.43.围岩表现为重稀土略富集,LREE/HREE比值平均为0.97.铁矿石和围岩稀土元素原始地幔标准化值显示铁矿石稀土元素整体具有弱的正铕异常(δEu为1.03~1.50),Ce无明显的正负异常(δCe为0.54~1.15),这与海底喷气沉积产物的特征一致.围岩中无明显Eu异常,平均为1.16.δCe的范围为0.18~1.01,相对比较稳定.这些特征显示属于早前寒武纪海洋化学沉积的产物,表明矿物大地构造背景为大洋岛弧,物源区类型为未切割的岩浆弧.  相似文献   

10.
We present in situ trace element and Nd isotopic data of apatites from metamorphosed and metasomatized (i.e., altered) and unaltered granitoids in the Songnen and Jiamusi massifs in the eastern Central Asian Orogenic Belt, with the aim of fingerprinting granitoid petrogenesis, including both the magmatic and post-magmatic evolution processes. Apatites from altered granitoids (AG) and unaltered granitoids (UG) are characterized by distinct textures and geochemical compositions. Apatites from AG have irregular rim overgrowths and complex internal textures, along with low contents of rare earth elements (REEs), suggesting the re-precipitation of apatite during epidote crystallization and/or leaching of REEs from apatite by metasomatic fluids. εNd(t) values of the these apatites are decoupled from zircon εHf(t) values for most samples, which can be attributed to the higher mobility of Nd as compared to Sm in certain fluids. Apatites from UG are of igneous origin based on their homogeneous or concentric zoned textures and coupled Nd-Hf isotopic compositions. Trace element variations in igneous apatite are controlled primarily by the geochemical composition of the parental melt, fractional crystallization of other REE-bearing minerals, and changes in partition coefficients. Sr contents and Eu/Eu* values of apatites from UG correlate with whole-rock Sr and SiO2 contents, highlighting the effects of plagioclase fractionation during magma evolution. Apatites from UG can be subdivided into four groups based on REE contents. Group 1 apatites have REE patterns similar to the host granitoids, but are slightly enriched in middle REEs, reflecting the influence of the parental melt composition and REE partitioning. Group 2 apatites exhibit strong light REE depletions, whereas Group 3 apatites are depleted in middle and heavy REEs, indicative of the crystallization of epidote-group minerals and hornblende before and/or during apatite crystallization, respectively. Group 4 apatites are depleted in heavy REEs, but enriched in Sr, which are features of adakites. Some unusual geochemical features of the apatites, including the REE patterns, Sr contents, Eu anomalies, and Nd isotopic compositions, indicate that inherited apatites are likely to retain the geochemical features of their parental magmas, and thus provide a record of small-scale crustal assimilation during magma evolution that is not evident from the whole-rock geochemistry.  相似文献   

11.
The enrichment of gold–quartz ores from the Rodionovskoe deposit in chalcophile elements (Au, Ag, As, Sb) is established. The ores are characterized by small negative Eu anomalies and low REE contents, which are typical of magmatic fluids. Slight enrichment of ores in Bi is evidence of the possible involvement of magmatic fluid in ore formation, which may have been superimposed on early metamorphic quartz veins and veinlets. The variously oriented REE patterns also indicate the presence of another magmatic fluid source, which could be related to the post-ore granitic intrusion. These results generally confirm the metamorphic–magmatic model of the formation of the gold–quartz deposits of the Yana–Kolyma belt. Our data are of practical interest for regional metallogenic forecasts, search, and evaluation of gold deposits.  相似文献   

12.
位处华北板块北缘东段的辽吉裂谷带内发育有多处中、小型铅锌矿床,其中,同时发育层状和脉状铅锌矿的青城子矿床是典型的代表。为了探讨青城子层状铅锌矿和脉状铅锌矿矿质来源及成因的异同及其所代表的地质意义,利用ICP-MS对层状铅锌矿及其围岩、脉状铅锌矿及其围岩和后期穿矿脉岩进行了稀土元素测试。结果表明,所有样品均具有轻稀土元素(LREE)富集和明显分异的特点。层状铅锌矿及其围岩具有Eu正异常和较弱的Ce负异常,表明其成矿物质均来自上升的深部热水流体与海水的混合热液,在高温、还原流体和海水的参与下成矿。脉状铅锌矿及其围岩稀土元素配分模式与层状铅锌矿及其围岩相似,但其Eu为负异常和Ce异常不明显,部分样品出现较弱的Ce正异常,对比分析穿矿脉岩明显的Eu负异常和Ce正异常以及二者稀土元素总量稍大于层状铅锌矿的特点,文章认为青城子层状矿石为沉积成矿,成矿热液为深部热水流体与海水的混合热液,但后期受到岩浆侵入叠加改造的影响而在局部形成脉状铅锌矿体,引起了Eu负异常和局部Ce正异常的出现以及稀土元素总量的增加。  相似文献   

13.
The Coniacian-Santonian high-phosphorus oolitic iron ore at Aswan area is one of the major iron ore deposits in Egypt. However, there are no reports on its geochemistry, which includes trace and rare earth elements evaluation. Texture, mineralogy and origin of phosphorus that represents the main impurity in these ore deposits have not been discussed in previous studies. In this investigation, iron ores from three localities were subjected to petrographic, mineralogical and geochemical analyses. The Aswan oolitic iron ores consist of uniform size ooids with snowball-like texture and tangentially arranged laminae of hematite and chamosite. The ores also possess detrital quartz, apatite and fine-grained ferruginous chamosite groundmass. In addition to Fe2O3, the studied iron ores show relatively high contents of SiO2 and Al2O3 due to the abundance of quartz and chamosite. P2O5 ranges from 0.3 to 3.4 wt.% showing strong positive correlation with CaO and suggesting the occurrence of P mainly as apatite. X-ray diffraction analysis confirmed the occurrence of this apatite as hydroxyapatite. Under the optical microscope and scanning electron microscope, hydroxyapatite occurred as massive and structureless grains of undefined outlines and variable size (5–150 μm) inside the ooids and/or in the ferruginous groundmass. Among trace elements, V, Ba, Sr, Co, Zr, Y, Ni, Zn, and Cu occurred in relatively high concentrations (62–240 ppm) in comparison to other trace elements. Most of these trace elements exhibit positive correlations with SiO2, Al2O3, and TiO2 suggesting their occurrence in the detrital fraction which includes the clay minerals. ΣREE ranges between 129.5 and 617 ppm with strong positive correlations with P2O5 indicating the occurrence of REE in the apatite. Chondrite-normalized REE patterns showed LREE enrichment over HREE ((La/Yb)N = 2.3–5.4) and negative Eu anomalies (Eu/Eu* = 0.75–0.89). The oolitic texture of the studied ores forms as direct precipitation of iron-rich minerals from sea water in open space near the sediment-water interface by accretion of FeO, SiO2, and Al2O3 around suspended solid particles such as quartz and parts of broken ooliths. The fairly uniform size of the ooids reflects sorting due to the current action. The geochemistry of major and trace elements in the ores reflects their hydrogenous origin. The oolitic iron ores of the Timsha Formation represent a transgressive phase of the Tethys into southern Egypt during the Coniacian-Santonian between the non-marine Turonian Abu Agag and Santonian-Campanian Um Barmil formations. The abundance of detrital quartz, positive correlations between trace elements and TiO2 and Al2O3, and the abundance mudstone intervals within the iron ores supports the detrital source of Fe. This prediction is due to the weathering of adjacent land masses from Cambrian to late Cretaceous. The texture of the apatite and the REE patterns, which occurs entirely in the apatite, exhibits a pattern similar to those in the granite, thus suggesting a detrital origin of the hydroxyapatite that was probably derived from the Precambrian igneous rocks. Determining the mode of occurrence and grain size of hydroxyapatite assists in the maximum utilization of both physical and biological separation of apatite from the Aswan iron ores, and hence encourages the use of these ores as raw materials in the iron making industry.  相似文献   

14.
The Middle-Lower Yangtze River Valley Metallogenic Belt (MLYB) is located on the northern margin of the Yangtze Plate (Eastern China). Ore deposits in the belt are mainly clustered in seven ore districts, and are closely associated with Mesozoic intermediate-felsic magmatic rock. Among the seven ore districts, the Luzong and Ningwu districts host large-scale iron resources in volcanic basins. The Makou magnetite-apatite deposit in the southern Luzong Basin was previously interpreted to be related to a quartz syenite porphyry. In this study, we conducted field geological studies and determined the age and geochemistry of the Makou intrusive rocks. Petrography and electron probe micro analysis (EPMA) indicated that the Makou ore-hosting rocks have intense albite alteration. The wallrock alteration is spatially restricted, and comprises albite alteration (Stage I), magnetite mineralization (Stage II), quartz-sulfide alteration (Stage III) and carbonate alteration (Stage IV) stages. Fluid inclusions in syn-mineralization apatite homogenized at 252.2–322.6 °C, which slightly lower than is typical for magnetite-apatite deposits in the region. Field study revealed that the quartz syenite porphyry at Makou disrupted the orebodies along clear-cut intrusive contacts, and that the quartz syenite porphyry does not contain iron mineralization, suggesting it has no direct genetic relationship with the iron mineralization. The ore-hosting albitite and ore-forming biotite diorite have LA-ICP-MS zircon U-Pb ages of 129.6 ± 1.2 Ma and 131.2 ± 3.3 Ma, respectively, and the iron mineralization was dated by mass spectrometer phlogopite 40Ar-39Ar at 130.76 ± 0.77 Ma. We propose that the Makou magnetite-apatite deposit is genetically related to the biotite diorite, rather than to the quartz syenite porphyry in the mine pit. The biotite diorite closely resembles intrusions related to magnetite-apatite deposits elsewhere in the region.  相似文献   

15.
The Taihe intrusion is one of the layered intrusions situated in the central zone of the Emeishan Large Igneous Province (ELIP), SW China. The cyclic units in the Middle Zone of the intrusion are composed of apatite-magnetite clinopyroxenite at the base and gabbro at the top. The apatite-rich oxide ores contain 6–12 modal% apatite and 20–50 modal% Fe-Ti oxides evidently distinguished from the coeval intrusions in which apatite-rich rocks are poor in Fe-Ti oxides. Most of apatites of the Taihe Middle and Upper Zones are fluorapatite, although four samples show slightly high Cl content in apatite suggesting that they crystallize from a hydrous parental magma. Compared to the apatite from the gabbro of the Panzhihua intrusion, situated 100 km to the south of the Taihe intrusion, the apatite of the Taihe rocks is richer in Sr and depleted in HREE relative to LREE. The calculated magma in equilibrium with apatite of the Taihe Middle and Upper Zones also shows weakly negative Sr anomalies in primitive mantle normalized trace element diagrams. These features indicate that the apatite of the Taihe Middle and Upper Zones crystallizes after clinopyroxene and before plagioclase. The apatite of the Taihe Middle and Upper Zones shows weakly negative Eu anomalies suggesting a high oxygen fugacity condition. The high iron and titanium contents in the oxidizing magma result in crystallization of Fe-Ti oxides. Crystallization of abundant Fe-Ti oxides and clinopyroxenes lowers the solubility of phosphorus and elevates SiO2 concentration in the magma triggering the saturation of apatite. The positive correlations of Sr, V, total REE contents and Ce/Yb ratio in apatite with cumulus clinopyroxene demonstrate approximately compositional equilibrium between these phases suggesting they crystallized from the same ferrobasaltic magma. Early crystallization and accumulation of Fe-Ti oxide together with apatite produced the apatite-rich oxide ores at the base of the cyclic units of the Taihe Middle Zone.  相似文献   

16.
新疆蒙库铁矿床稀土元素地球化学及对铁成矿作用的指示   总被引:16,自引:4,他引:16  
新疆富蕴县蒙库大型铁矿呈层状、似层状、透镜状赋存于下泥盆统康布铁堡组变质火山-沉积岩系中.矿体中发育矽卡岩,但矽卡岩并不产在侵入岩接触带上.绿帘石、石榴石和矿石的稀土配分模式具有相似性,均为轻稀土富集,正铕异常,基本上无铈异常,暗示它们之间存在成因联系.石榴石稀土配分模式呈折线型,具有明显的正铕异常,石榴石流体包裹体中熔融包裹体、熔流包裹体和气液包裹体共存,表明石榴石矽卡岩具有岩浆成因和热液成因的特征,形成于晶体 熔体 流体三相共存的岩浆-热液过渡阶段.矿床地质特征、矽卡岩矿物和矿石稀土特征表明蒙库铁矿为矽卡岩型矿床.  相似文献   

17.
Over 700 apatite grains from a range of rock types have been analysed by laser-ablation microprobe ICPMS for 28 trace elements, to investigate the potential usefulness of apatite as an indicator mineral in mineral exploration. Apatites derived from different rock types have distinctive absolute and relative abundances of many trace elements (including rare-earth elements (REE), Sr, Y, Mn, Th), and chondrite-normalised trace-element patterns. The slope of chondrite-normalised REE patterns varies systematically from ultramafic through mafic/intermediate to highly fractionated granitoid rock types. (Ce/Yb)cn is very high in apatites from carbonatites and mantle-derived lherzolites (over 100 and over 200, respectively), while (Ce/Yb)cn values in apatites from granitic pegmatites are generally less than 1, reflecting both HREE enrichment and LREE depletion. Within a large suite of apatites from granitoid rocks, chemical composition is closely related to both the degree of fractionation and the oxidation state of the magma, two important parameters in determining the mineral potential of the magmatic system. Apatite can accept high levels of transition and chalcophile elements and As, making it feasible to recognise apatite associated with specific types of mineralisation. Multivariate statistical analysis has provided a user-friendly scheme to distinguish apatites from different rock types, based on contents of Sr, Y, Mn and total REE, the degree of LREE enrichment and the size of the Eu anomaly. The scheme can be used for the recognition of apatites from specific rock types or styles of mineralisation, so that the provenance of apatite grains in heavy mineral concentrates can be determined and used in geochemical exploration.  相似文献   

18.
铁山河铁矿床赋存于古元古界银鱼沟群地层中,是华北陆块南缘一个重要的富铁矿床。文章对铁山河铁矿床进行了系统的野外地质调查和矿床地球化学研究,并与国内外典型的沉积变质型铁矿床进行了对比。结果显示:铁山河铁矿床保存有明显的化学沉积的特征,化学成分主要由Fe_2O_3、FeO和SiO_2组成,Al_2O_3和TiO_2含量较低;稀土元素总量较低,稀土元素配分模式呈轻稀土元素亏损、重稀土元素富集的特征,具有明显的Eu、Y、La正异常,弱的Ce异常,Y/Ho比值与海水的分布范围相近,Sr/Ba和Ni/Co比值分别与鞍山弓长岭铁矿和山西五台山、冀东迁安地区铁矿相似,但与基性岩浆活动相关的Co、Ni、Cr、V、Ti元素含量相对偏高。这些特征表明:该矿床的形成可能与海相火山沉积物有关,属于火山沉积变质型铁矿的范围,区内基性岩脉广泛发育,矿床可能遭受了后期热液的叠加改造作用;成矿物质来源于热液和海水的混合作用,矿床形成于相对缺氧的环境。  相似文献   

19.
鲁西碳酸岩中磷灰石的原位激光探针分析及其成岩意义   总被引:3,自引:2,他引:1  
邱检生  张晓琳  胡建  李真 《岩石学报》2009,25(11):2855-2865
以鲁西雪野和八陡碳酸岩中的磷灰石为对象,运用EMPA和LA-ICP-MS技术,分别测定了它们的主量与微量元素组成,并据此讨论了它们的成岩意义.研究结果表明,这些磷灰石富F(=1.07%~2.74%)贫Cl(<0.04%),种属为羟氟磷灰石或氟羟磷灰石.微量元素组成上富Sr、Th、U、Pb和轻稀土,是全岩中上述元素的主要载体之一.磷灰石的Sr、F含量与∑REE及LREE/HREE比值均表现出较明显的正相关性,其富Sr、贫Y和富轻稀土等特点与世界典型碳酸岩中的磷灰石相似,但它们具有更高的Sr/Y和Th/U比值,Sr、Ce、Th、Y含量接近地幔中由交代作用形成的磷灰石,说明其寄主碳酸岩岩浆源区应为遭受过流体交代作用的富集地幔.这些磷灰石的(La/Nd)_N比值>1,(La/Yb)_N比值多数在100以上,与世界其他地区典型碳酸岩中的磷灰石相比铕负异常相对更明显,表明其寄主碳酸岩浆经历一定程度的分异演化.雪野较八陡碳酸岩中磷灰石含更高的F、Sr和∑REE含量及(La/Yb)_N比值,说明其寄主岩浆的演化程度更高.  相似文献   

20.
The Datangpo‐type manganese ore deposits, which formed during the Nanhuan (Cryogenian) period and are located in northeastern Guizhou and adjacent areas, are one of the most important manganese resources in China, showing good prospecting potential. Many middle‐to‐large deposits, and even super‐large mineral deposits, have been discovered. However, the genesis of manganese ore deposits is still controversial and remains a long‐standing source of debate; there are several viewpoints including biogenesis, hydrothermal sedimentation, gravity flows, cold‐spring carbonates, etc. Geochemical data from several manganese ore deposits show that there are positive correlations between Al2O3 and TiO2, SiO2, K2O, and Na2O, and strong negative correlations between Al2O3 and CaO, MgO, and MnO in black shales and manganese ores. U, Mo, and V show distinct enrichment in black shales and inconspicuous enrichment in Mn ores. Ba and Rb show strong positive correlations with K2O in manganese ores. Cu, Ni, and Zn show clear correlations with total iron in both manganese ores and black shales. ∑REE of manganese ores has a large range with evident positive Ce anomalies and positive Eu anomalies. The Post Archean Australian Shale (PAAS) normalized rare earth element (REE) distribution patterns of manganese ores present pronounced middle rare earth element (MREE) enrichment, producing “hat‐shaped” REE plots. ∑REE of black shales is more variable compared with PAAS, and the PAAS‐normalized REE distribution patterns appear as “flat‐shaped” REE plots, lacking evident anomaly characteristics. δ13C values of carbonate in both manganese ores and the black shales show observable negative excursions. The comprehensive analysis suggests that the black shales formed in a reducing and quiet water column, while the manganese ores formed in oxic muddy seawater, which resulted from periodic transgressions. There was an oxidation–reduction cycle of manganese between the top water body and the bottom water body caused by the transgressions during the early Datangpo, which resulted in the dissolution of manganese. Through the exchange of the euphotic zone water and the bottom water, and episodic inflow of oxygenated water, the manganese in the bottom water was oxidized to Mn‐oxyhydroxides and rapidly buried along with algae. In the early diagenetic stage, Mn‐oxyhydroxides were reduced and dissolved in the anoxic pore water and then transformed into Mn‐carbonates by reacting with HCO3? from the degradation of organic matter or from seawater. In the intervals between transgressions, continuous supplies of terrigenous clastics and the high productive rates of organic matter in the euphotic zone resulted in the deposition of the black shales enriched in organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号