首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 686 毫秒
1.
The concentrations of trace elements in apatite from granitoid rocks of the Mt Isa Inlier have been investigated using the laser‐ablation inductively coupled plasma‐mass spectrometry (ICP‐MS) microprobe. The results indicate that the distribution of trace elements (especially rare‐earth elements (REE), Sr, Y, Mn and Th) in apatite strongly reflects the chemical characteristics of the parental rock. The variations in the trace‐element concentrations of apatite are correlated with parameters such as the SiO2 content, oxidation state of iron, total alkalis and the aluminium saturation index (ASI). The relative enrichment of Y, HREE and Mn and the relative depletion of Sr in the apatites studied reflect the degree of fractionation of the host granite. Apatites from strongly oxidised plutons tend to have higher concentrations of LREE relative to MREE. Manganese concentrations are higher in apatite from reduced granitoids because Mn2+substitutes directly for Ca2+. The La/Ce ratio of apatite is well‐correlated with the whole‐rock K2O and Na2O contents, as well as with the oxidation state and ASI. Because apatite trace‐element composition reflects the chemistry of the whole rock, it can be a useful indicator mineral for the recognition of mineralised granite suites, where particular mineralisation styles are associated with granitoids that have specific geochemical fingerprints.  相似文献   

2.
This paper presents abundances of major and trace elements of apatites in granitic rocks associated with different types of ore deposits in Central Kazakhstan on the basis of electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry. Our results demonstrate that the concentrations and ratios of elements in apatites from different granitoid rocks show distinct features, and are sensitive to magma evolution, petrogenetic and metallogenetic processes. Apatites in the rocks associated with Mo‐W deposits have high content of F and MnO, low content of Cl, which may be indicative of sedimentary sources, while apatites from a Pb‐Zn deposit show relatively high content of Cl and low F content, which possibly suggest a high water content. In these apatites, Sr contents decrease, while Mn and Y contents increase with magma evolution. This relationship reflects that these elements in apatites are related with the degree of magmatic differentiation. Four types of REE patterns in apatites are identified. Type 1 character of highest (La/Yb)N in apatites of Aktogai porphyry Cu‐Mo deposit, Sayak‐I skarn Cu deposit and Akzhal skarn Pb‐Zn depposit is likely produced by the crystallization of heavy REE‐enriched minerals. Type 2 character of upward‐convex light REE in apatite of Aktogai porphyries likely results from La‐enriched mineral crystallization. Type 3 feature of Nd depletion in apatites of East Kounrad and Zhanet deposits both from Mo‐W deposits primarily inherits the character of host‐rock. Type 4 apatites of Aktogai deposit and Akshatau W‐Mo deposit with wide range of REE contents may suggest that apatites crystallize under a wide temperature range. Three types of apatite with distinct redox states are identified based on Eu anomaly. The Aktogai apatite with slight negative Eu anomaly displays the most oxidized state of the magma, and the apatites of other samples at Aktogai, East Kounrad and Akzhal with moderate negative Eu anomaly show moderate oxidizing condition of these rocks, while the remaining apatites with strong En anomaly indicate a moderate reductive state of these rocks.  相似文献   

3.
张荣伟  薛传东  薛力鹏  刘星 《岩石学报》2019,35(5):1407-1422
甭哥金矿床位于西南三江造山带北段的义敦弧南缘,属于与富碱侵入岩有关的金矿床。目前,对其成矿机理认识仍较为薄弱,制约了资源评价和找矿勘查进展。本文选取甭哥金矿床强矿化的正长斑岩和弱矿化的黑云辉石正长岩中的磷灰石作为研究对象,详细剖析磷灰石的地球化学特征,探讨其记录的成岩成矿信息。结果表明,磷灰石的稀土元素含量特征及配分模式显示富碱岩浆主要来自于壳幔混合的源区,黑云辉石正长岩中磷灰石的(La/Sm)N、(La/Yb)N、(Sm/Yb)N值和Sr含量呈正相关,说明长石结晶对岩浆结晶分异有重要的影响;正长斑岩中磷灰石具有高Sr/Y、Ce/Pb值,而Th/U、(Sm/Yb)N值较低,指示强烈的流体活动参与了岩浆结晶过程;磷灰石挥发分(F、Cl)含量及比值特征指示金矿成矿流体主要来自地幔源区,成矿与富碱、高氯的成矿流体有关。磷灰石Mn氧逸度计估算结果显示,甭哥富碱侵入岩具有高氧逸度特性,但两种不同岩性岩石的氧逸度具有差异性。其中,正长斑岩的logf_(O_2)值为-12~-10. 3,黑云辉石正长岩的logf_(O_2)值为-15. 5~-11. 1,磷灰石中SO_3含量及Ga含量也暗示正长斑岩的氧逸度高于黑云辉石正长岩的特征;结合磷灰石低Mn、Ga含量和高的Cl、SO_3含量,反映甭哥金矿床金的成矿是在高氧逸度条件下金氯络合物迁移、富集而沉淀的结果。因而,磷灰石的地球化学特征对金矿床成矿过程示踪和勘查评价具有重要的指示意义。  相似文献   

4.
In situ analysis of detrital apatite is a significant approach to sedimentary provenance analysis, which is an important aspect in sedimentary geology study. Several trace elements such as Sr, Y and Rare Earth Elements (REEs) concentrate in apatites, and the distribution of these elements depends on the content of SiO2 and the distribution coefficient of the melt, thus the trace element abundances is obviously different in different rocks. These features can be used to indicate parent-rocks of detrital apatites in sedimentary rocks. The approaches and proxies of detrital apatite to sedimentary provenance analysis can be summarized as follows. ①elemental geochemistry, such as Sr, Y, REEs, the approaches including chondrite-normalised REE distribution patterns of apatites, Classification and Regression Tree (CART) and discriminant plots of REE parameters; ②isotopic geochemistry, including Sr-Nd and Lu-Hf isotopes; ③Multi-dating, including low-temperature thermochronology such as (U-Th)/He (AHe)and Fission Track (AFT) dating, and high-temperature thermochronology such as U-Pb dating. Based on an integrated analysis using these methods, we can get various and comprehensive geological information such as the rock type, formation conditions and evolution of source rocks, the history of uplift and exhumation of source areas and even the subsidence history of sedimentary basins. Although the low-temperature thermochronology of detrital apatite is widely used in sedimentary provenance analysis, the elemental and isotopic geochemistry, as well as the U-Pb dating, remains to be developed. These approaches are supposed to have wide application prospects in several research areas such as tectonics, sedimentary geology basin analysis and even paleoclimatology.  相似文献   

5.
鲁西碳酸岩中磷灰石的原位激光探针分析及其成岩意义   总被引:3,自引:2,他引:1  
邱检生  张晓琳  胡建  李真 《岩石学报》2009,25(11):2855-2865
以鲁西雪野和八陡碳酸岩中的磷灰石为对象,运用EMPA和LA-ICP-MS技术,分别测定了它们的主量与微量元素组成,并据此讨论了它们的成岩意义.研究结果表明,这些磷灰石富F(=1.07%~2.74%)贫Cl(<0.04%),种属为羟氟磷灰石或氟羟磷灰石.微量元素组成上富Sr、Th、U、Pb和轻稀土,是全岩中上述元素的主要载体之一.磷灰石的Sr、F含量与∑REE及LREE/HREE比值均表现出较明显的正相关性,其富Sr、贫Y和富轻稀土等特点与世界典型碳酸岩中的磷灰石相似,但它们具有更高的Sr/Y和Th/U比值,Sr、Ce、Th、Y含量接近地幔中由交代作用形成的磷灰石,说明其寄主碳酸岩岩浆源区应为遭受过流体交代作用的富集地幔.这些磷灰石的(La/Nd)_N比值>1,(La/Yb)_N比值多数在100以上,与世界其他地区典型碳酸岩中的磷灰石相比铕负异常相对更明显,表明其寄主碳酸岩浆经历一定程度的分异演化.雪野较八陡碳酸岩中磷灰石含更高的F、Sr和∑REE含量及(La/Yb)_N比值,说明其寄主岩浆的演化程度更高.  相似文献   

6.
We present in situ trace element and Nd isotopic data of apatites from metamorphosed and metasomatized (i.e., altered) and unaltered granitoids in the Songnen and Jiamusi massifs in the eastern Central Asian Orogenic Belt, with the aim of fingerprinting granitoid petrogenesis, including both the magmatic and post-magmatic evolution processes. Apatites from altered granitoids (AG) and unaltered granitoids (UG) are characterized by distinct textures and geochemical compositions. Apatites from AG have irregular rim overgrowths and complex internal textures, along with low contents of rare earth elements (REEs), suggesting the re-precipitation of apatite during epidote crystallization and/or leaching of REEs from apatite by metasomatic fluids. εNd(t) values of the these apatites are decoupled from zircon εHf(t) values for most samples, which can be attributed to the higher mobility of Nd as compared to Sm in certain fluids. Apatites from UG are of igneous origin based on their homogeneous or concentric zoned textures and coupled Nd-Hf isotopic compositions. Trace element variations in igneous apatite are controlled primarily by the geochemical composition of the parental melt, fractional crystallization of other REE-bearing minerals, and changes in partition coefficients. Sr contents and Eu/Eu* values of apatites from UG correlate with whole-rock Sr and SiO2 contents, highlighting the effects of plagioclase fractionation during magma evolution. Apatites from UG can be subdivided into four groups based on REE contents. Group 1 apatites have REE patterns similar to the host granitoids, but are slightly enriched in middle REEs, reflecting the influence of the parental melt composition and REE partitioning. Group 2 apatites exhibit strong light REE depletions, whereas Group 3 apatites are depleted in middle and heavy REEs, indicative of the crystallization of epidote-group minerals and hornblende before and/or during apatite crystallization, respectively. Group 4 apatites are depleted in heavy REEs, but enriched in Sr, which are features of adakites. Some unusual geochemical features of the apatites, including the REE patterns, Sr contents, Eu anomalies, and Nd isotopic compositions, indicate that inherited apatites are likely to retain the geochemical features of their parental magmas, and thus provide a record of small-scale crustal assimilation during magma evolution that is not evident from the whole-rock geochemistry.  相似文献   

7.
REE distributions of an unusual suite of mantle-derived amphibole/apatite rich xenoliths have very steep, LREE-enriched chondrite-normalised patterns with no Eu anomalies. These are closely analogous to REE distributions of carbonatitic and kimberlitic rocks. A wide range in absolute abundances of REE reflects the varied mineral assemblages of this xenolith suite and, together with other trace element and volatile concentrations, supports an origin by fractionation of, or separation from, a volatile-charged LIL-enriched (possibly kimberlitic/carbonatitic) magma. Such a magma could be a medium for volatile transfer, addition of Ti, V, K and P, and LREE enrichment within the upper mantle. It is postulated that such metasomatism in the upper mantle is a necessary precursor to continental alkaline volcanism.Geochemical modelling based on REE suggests that a pyrolite source +0.35% apatite (total of 0.5% apatite), with amphibole accounting for all K2O, can yield basanitic liquids with approximately 1–10% partial melting if the source is LREE-enriched (La about 20 times chondrite and Yb about 4.5–5 times chondrite).REE and trace element contents of the host rocks indicate that little exchange of these elements has occurred between xenolith and host magma during transport and emplacement.  相似文献   

8.
The rhyolitic dome in the Rangan area has been subjected to hydrothermal alterations by two different systems, (1) A fossil magmatic–hydrothermal system with a powerful thermal engine of a deep monzodioritic magma, (2) An active hydrothermal system dominated by meteoric water. Based on mineralogical and geochemical studies, three different alteration facies have been identified (phyllic, advanced argillic and silicic) with notable differences in REE and other trace elements behaviour. In the phyllic alteration zone with assemblage minerals such as sericite, pyrite, quartz, kaolinite, LREE are relatively depleted whereas HREE are enriched. The advanced argillic zone is identified by the presence of alunite–jarosite and pyrophyllite as well as immobility of LREE and depletion in HREE. In the silicic zone, most of LREE are depleted but HREE patterns are unchanged compared to their fresh rock equivalents. All the REE fractionation ratios (La/Yb)cn, (La/Sm)cn, (Tb/Yb)cn, (Ce/Ce1)cn and (Eu/Eu1)cn are low in the phyllic altered facies. (Eu/Eu1)cn in both advanced and silicic facies is low too. In all alteration zones, high field strength elements (HFSE) (e.g. Ti, Zr, Nb) are depleted whereas transition elements (e.g. V, Cr, Co, Ni, Fe) are enriched. Geochemically speaking, trace and rare earth elements behave highly selective in different facies.  相似文献   

9.
Cumulus apatite, sphene, feldspar, amphibole and biotite from the pulaskite of the Kangerdlugssuaq alkaline intrusion have been analysed for rare earth elements (REE) by instrumental neutron activation analysis. The apatite is particularly rich in REE, contains 3.6% Ce and shows a steep, light REE-enriched, chondrite-normalised pattern. The other minerals have light REE enrichment but with sphene showing a peak at Ce on a chondrite-normalised plot. REE partition coefficient values show that the light REE are preferentially accommodated by apatite relative to sphene. The differences in these coefficients result from differences in the co-ordination of the REE in the two minerals.  相似文献   

10.
The effects of terrestrial weathering on REE mobilization are evaluated for a variety of uncommon meteorites found in Antarctica and in hot deserts. The meteorites analyzed include 7 non-cumulate eucrites, 10 shergottites, 3 nakhlites, 2 lunar meteorites, 4 angrites, 10 acapulcoites, 1 winonaite, and 1 brachinite. In-situ concentration measurements of lanthanides and selected other minor and trace elements were made on individual grains by secondary ion mass spectrometry (SIMS). In Antarctic meteorites, oxidation converts Ce3+ to Ce4+, which is less soluble than the trivalent REE, resulting in Ce anomalies. The mineral most affected is low-Ca pyroxene. However, not all grains of a given mineral are, and distinct analyses of a single grain can even yield REE patterns with and without Ce anomalies. The effect is most pronounced for Antarctic eucrites in which Ce anomalies are observed not only in individual minerals but also in whole rock samples. Although Ce anomalies are observed in meteorites from hot deserts as well, the most characteristic signs of chemical alteration in this environment are a LREE enrichment with a typical crustal signature, as well as Sr, Ba and U contaminations. These can modify the whole rock REE patterns and disturb the isotope systematics used to date these objects. The LREE contamination is highly heterogeneous, affecting some grains and not others of a given mineral (mainly olivine and low-Ca pyroxene, the two minerals with the lowest REE concentrations). The major conduit for REE movement is through shock-induced cracks and defects, and the highest levels of contamination are found in altered material filling such veins and cracks. Meteorites that experienced low shock levels and those that are highly recrystallized are the least altered.  相似文献   

11.
Trace element evidence indicates that at the Buell Park diatreme, Navajo volcanic field, the felsic minette can be best explained by crystal fractionation from a potassic magma similar in composition to the mafic minettes. Compatible trace element (Cr, Ni, Sc) abundances decrease while concentrations of most incompatible elements (Ce, Yb, Rb, Ba, Sr) remain constant or increase from mafic to felsic minette. In particular, the nearly constant Ce/Yb ratio of the minettes combined with the decrease in Cr, Ni, and Sc abundances from mafic to felsic minette is inconsistent with a model of varying amounts of partial melting as the process to explain minette compositions. The uniformity of rare earth element (REE) abundances in all the minettes requires that an accessory mineral, apatite, dominated the geochemistry of the REE during fractionation. A decrease in P2O5 from mafic to felsic minette and the presence of apatite in cognate inclusions are also consistent with apatite fractionation. Higher initial87Sr/86Sr ratios in the felsic minettes relative to the proposed parental mafic minettes, however, is inconsistent with a simple fractionation model. Also, a separated phlogopite has a higher initial87Sr/86Sr ratio than host minette. These anomalous isotopic features probably reflect interaction of minette magma with crust.The associated ultramafic breccia at Buell Park is one of the Navajo kimberlites, but REE concentrations of the matrix do not support the kimberlite classification. Although the matrix of the breccia is enriched in the light REE relative to chondrites, and has high La, Rb, Ba, and Sr concentrations relative to peridotites, the concentrations of these elements are significantly lower than in South African kimberlites. A high initial87Sr/86Sr ratio combined with petrographic evidence of ubiquitous crustal xenoliths in the Navajo kimberlites suggests that the relatively high incompatible element concentrations are due to a crustal component. Apparently, Navajo kimberlites are most likely a mixture of comminuted mantle wall rock and crustal material; there is no evidence for an incompatible element-rich magma which is characteristic of South African kimberlites.If the mafic minettes are primary magmas derived from a garnet peridotite source with chondritic REE abundances, then REE geochemistry requires very small (less than 1%) degrees of melting to explain the minettes. Alternatively, the minettes could have formed by a larger degree of melting of a metasomatized, relatively light REE-enriched garnet peridotite. The important role of phlogopite and apatite in the differentiation of the minettes supports this latter hypothesis.  相似文献   

12.
The release of Pb and rare earth elements (REE) during granitoid weathering was investigated through dissolution experiments of fresh granite and soil samples. Two aliquots of a granite sample from the El-Capitan Granite, Sierra Nevada, California, were leached several times using a dilute acid at pH = 1. The results of the experiment were compared with Pb and REE data from soils developed on the same rock. During the early stages of granitoid dissolution, Pb and REE were preferentially released from some of the accessory phases (i.e., allanite, sphene, and apatite). This caused higher 206Pb/207Pb and 208Pb/207Pb values and different REE patterns in solution compared with the rock values. Based on Pb isotopes and REE patterns, three stages of rock dissolution can be identified. In the first stage the dissolution of allanite dominates the release of Pb and REE from accessory phases, as 208Pb/207Pb, Ce/Pb, and chondrite-normalized Ce/Yb ratios in solution increase and approach the values of allanite. In the second stage, the dissolution of apatite and sphene become more significant. In the third stage, the isotopic ratios of Pb and the normalized-REE patterns reflect the depletion of accessory phases and the increase in the rate of feldspar dissolution. According to our estimate (based on Si release from the rock) all three stages account for the first 500 kyr of granitoid weathering.Using the isotopic ratios of Pb, major elemental compositions, and REE concentrations both in the experimental solutions and in the soil we were able to establish the following order of the weathering rates of accessory phases: allanite > apatite > sphene. In addition, we have demonstrated that biotite is significantly less resistant to weathering than hornblende under acidic conditions, and is probably dissolved completely after approximately 500 kyr of rock weathering. We also suggest that within 500 kyr of granitoid weathering K-feldspar accounts for 15% of the released K.  相似文献   

13.
磷灰石广泛分布于火成岩、沉积岩和变质岩中,是一种常见的、包含丰富微量元素的副矿物。磷灰石晶格可容纳丰富的微量元素,且因其形成的物理化学条件不同会表现出差异明显的微量元素特征。利用磷灰石微量元素特征可以追踪物质来源和演化。现在常用的方法是利用磷灰石的微量元素绘制二元判别图解,经典判别图解包括Sr-Y、Sr-Mn、Y-(Eu/Eu^(*))和(Ce/Yb)_(N)-REE图解。随着微区测试技术发展,磷灰石微量元素数据日渐丰富,同时由于磷灰石化学成分的复杂性,传统图解已逐渐无法有效利用这些数据所携带的信息,进而无法准确判别其生成环境。建立能准确判别磷灰石物源的新型判别图解故而迫切。近年来,磷灰石微量元素数据的大量积累,为运用以大数据为依托,准确判别磷灰石物源奠定了数据基础。本研究将大数据技术与地球化学数据相结合,共收集整理了1925个代表性磷灰石测试点的微量元素数据,对富碱性火成岩、超镁铁质岩石、镁铁质火成岩、长英质花岗岩、中-低级变质岩、高级变质岩六种类型中磷灰石微量元素数据进行穷举端元处理,共获得7140个磷灰石物源判别图解端元组合,在轮廓系数限定下,进一步有效筛选并提取出能判别磷灰石物源类型的最优图解端元。本文构建了Eu/Y-Ce磷灰石判别新图解,相较于之前的磷灰石判别图解,其涵盖了更全面的物源类型,可以更准确地判别源区类型。  相似文献   

14.
In this study, the mobilization, redistribution, and fractionation of trace and rare earth elements (REE) during chemical weathering in mid-ridge (A), near mountaintop (B), and valley (C) profiles (weak, weak to moderate, and moderate to intense chemical weathering stage, respectively), are characterized. Among the trace elements, U and V were depleted in the regolith in all three profiles, Sr, Nb, Ta, Zr, and Hf displayed slight gains or losses, and Th, Rb, Cs, and Sc remained immobile. Mn, Ba, Zn, Cu, and Cr were enriched at the regolith in profiles A and B, but depleted in profile C. Mn, Pb, and Co were also depleted in the saprock and fractured shale zones in profiles A and B and enriched in profile C. REEs were enriched in the regolith and depleted at the saprock zone in profiles A and B and depleted along profile C. Mobility of trace and REEs increased with increasing weathering intensity. Normalized REE patterns based on the parent shale revealed light REE (LREE) enrichment, middle REE (MREE), and heavy REE (HREE) depletion patterns. LREEs were less mobile compared with MREEs and HREEs, and this differentiation increased with increasing weathering degree. Positive Ce anomalies were higher in profile C than in profiles A and B. The Ce fractionated from other REE showed that Ce changed from trivalent to tetravalent (as CeO2) under oxidizing conditions. Minimal REE fractionation was observed in the saprock zone in profiles A and B. In contrast, more intense weathering in profile C resulted in preferential retention of LREE (especially Ce), leading to considerable LREE/MREE and LREE/HREE fractionation. (La/Yb)N and (La/Sm)N ratios displayed maximum values in the saprock zone within low pH values. Findings demonstrate that acidic solutions can mobilize REEs and result in leaching of REEs out of the highly acidic portions of the saprock material and transport downward into fractured shale. The overall behavior of elements in the three profiles suggests that solution pH, as well as the presence of primary and secondary minerals, play important roles in the mobilization and redistribution of trace elements and REEs during black shale chemical weathering.  相似文献   

15.
The Kooh-Shah region located in a Tertiary volcanic-plutonic belt of the Lut Block in eastern Iran comprises several subvolcanic intermediate to acidic intrusive rocks, diorite to syenite in composition, which have intruded into volcanic rocks. The Kooh-Shah granitoid rocks are characterized by enrichment in large ion-lithophile elements (LILE: e.g. Sr, Ba, Rb) and depletion in high field-strength elements (HFSE: e.g. Nb, Ta, Ti). The chondrite-normalized REE patterns are characterized by moderate LREE enrichment (La/Yb)N=6.01-10.01, medium-heavy REE enrichment, and absence of Eu anomalies. The Kooh-Shah intrusive rocks are metaluminous, shoshonitic with calc-alkaline affinity and high values of magnetic susceptibility, and classified as the magnetite-series of oxidant I-type granitoids. The age of Kooh-Shah granitoid rocks based on zircon U-Pb age dating is 39.7±0.7 Ma (=Middle Eocene) and the ranges of their initial 87Sr/86Sr and 143Nd/144Nd ratios are from 0.704812 to 0.704920 and 0.512579 to 0.512644, respectively, when recalculated to an age of 39 Ma. The initial ?Nd isotope values for the Kooh-Shah intrusive rocks range from -0.18 to 1.09. This geochemical data indicates that the Kooh-Shah granitoid rocks formed from depleted mantle in an island arc setting. The geochemical signature of the studied granitoid rocks represents a characteristic guide for future exploration of copper-gold porphyry-type deposits in the Lut block.  相似文献   

16.
本文报道在东昆仑地区发现的一种较为稀少的含石榴石英云闪长玢岩,这也是此类岩石在中国的首次发现。该次火山岩形成于晚三叠纪,主要由富钙(CaO5 wt%)、贫锰(MnO3 wt%)的石榴石,富铝的角闪石(15.9 wt%),中性斜长石和石英等斑晶以及基质物质组成。岩石含有中等的SiO_2(61.1~62.2wt%),低的MgO(2.0 wt%),K_2O(1.3 wt%)以及较高的Al_2O_3(17 wt%)含量,呈现出次铝质至轻微过铝质的特征(ACNK=0.89~1.05)。在微量元素方面,该岩石富集大离子亲石元素和轻稀土元素,同时亏损Nb-Ta-Ti,显示出典型的消减带特征。而异常低的重稀土(Yb0.8×10~(-6))和相对高的Sr/Y比值(约38)表明石榴石是一个残留相,而较高的Al_2O_3含量,大多为正的铕异常反映了斜长石因结晶受到抑制而在岩浆演化晚期的聚集,同时表明岩浆具有较高的水含量。Nd-Sr同位素组成(ε_(Nd)(t)=-2.33~-1.38;~(87)Sr/~(86)Sr=0.706 5~0.706 7)和斜长石的反向分带显示,壳幔间岩浆混合作用在岩体的形成过程中扮演了重要角色。石榴石斑晶和其中的钛铁矿包体均含有较低的MgO,且包裹石榴石的角闪石形成于较高的压力(8~10 kb)条件下,显示这些矿物结晶自一个长英质岩浆中,且很可能形成于壳幔过渡带附近。尽管该岩石在富铝、低重稀土、高Sr/Y等很多方面均类似于埃达克岩石,但其中等含量的Sr(260×10~(-6))和La/Yb比值(16~21)却明显低于典型的埃达克岩和太古代的TTG。结合石榴石斑晶中广泛存在的磷灰石包体以及其较高的Sr和轻稀土分配系数,本文提出在岩浆演化早期结晶的磷灰石有效地降低了残余熔体中的Sr和轻稀土。这进一步表明,即使在高水逸度的条件下,磷灰石在岩浆早期的大量结晶可以有效地阻止一些弧岩浆演化成为埃达克质岩石。  相似文献   

17.
The Taihe intrusion is one of the layered intrusions situated in the central zone of the Emeishan Large Igneous Province (ELIP), SW China. The cyclic units in the Middle Zone of the intrusion are composed of apatite-magnetite clinopyroxenite at the base and gabbro at the top. The apatite-rich oxide ores contain 6–12 modal% apatite and 20–50 modal% Fe-Ti oxides evidently distinguished from the coeval intrusions in which apatite-rich rocks are poor in Fe-Ti oxides. Most of apatites of the Taihe Middle and Upper Zones are fluorapatite, although four samples show slightly high Cl content in apatite suggesting that they crystallize from a hydrous parental magma. Compared to the apatite from the gabbro of the Panzhihua intrusion, situated 100 km to the south of the Taihe intrusion, the apatite of the Taihe rocks is richer in Sr and depleted in HREE relative to LREE. The calculated magma in equilibrium with apatite of the Taihe Middle and Upper Zones also shows weakly negative Sr anomalies in primitive mantle normalized trace element diagrams. These features indicate that the apatite of the Taihe Middle and Upper Zones crystallizes after clinopyroxene and before plagioclase. The apatite of the Taihe Middle and Upper Zones shows weakly negative Eu anomalies suggesting a high oxygen fugacity condition. The high iron and titanium contents in the oxidizing magma result in crystallization of Fe-Ti oxides. Crystallization of abundant Fe-Ti oxides and clinopyroxenes lowers the solubility of phosphorus and elevates SiO2 concentration in the magma triggering the saturation of apatite. The positive correlations of Sr, V, total REE contents and Ce/Yb ratio in apatite with cumulus clinopyroxene demonstrate approximately compositional equilibrium between these phases suggesting they crystallized from the same ferrobasaltic magma. Early crystallization and accumulation of Fe-Ti oxide together with apatite produced the apatite-rich oxide ores at the base of the cyclic units of the Taihe Middle Zone.  相似文献   

18.
骆驼山镁铁--超镁铁岩体主要岩石类型有单辉橄长岩、橄榄辉长苏长岩、橄长岩、辉长苏长岩、辉长岩。橄榄石Fo为76~83,为贵橄榄石。辉石化学特征以及主量元素特征表明其属拉斑玄武岩系列,稀土元素配分曲线总体表现为轻稀土稍富集、重稀土微分异的特征。微量元素具有大离子亲石元素(Rb、Ba、Sr)相对富集,高场强元素Ta、Hf、Th相对亏损的特征。岩浆演化过程中分离结晶作用主要受单斜辉石控制。Nb/U、Ce/Pb值更接近于地壳值以及敏感元素比值协变关系表明岩浆演化过程发生了同化混染作用。Th/Yb-Nb/Yb、La/Ba-La/Nb之间的关系指示岩浆源区可能为流体交代改造的富集型岩石圈地幔。  相似文献   

19.
This paper aims to discuss the depositional settings and provenances for the Jurassic in Jiyuan basin, North China, based on the rare earth element (REE) and trace element features of 16 Jurassic argillaceous rock samples from the Anyao, Yangshuzhuang and Ma’ao Formations, respectively. Generally, geochemical analysis results show that chondrite-normalised REE distribution patterns of all the three formations are characterised by light-REE (LREE) enrichment, moderately negative Eu anomalies, slightly negative Ce anomalies, and strong fractionation between LREE and heavy-REE (HREE). Trace element proxies V/(V + Ni), Ce anom index, Ce/La, Sr/Ba, and Sr/Cu indicate a weak oxidation–reduction environment, progressively decreasing reducibility and water depth from the bottom up during Jurassic in Jiyuan basin. Palaeoclimate varied from humid in the Early Jurassic to arid in the Middle Jurassic, corresponding with the variations of palaeoredox and palaeosalinity. The provenances of Jurassic rocks in Jiyuan basin are mainly from felsic sources related to active continental margin and continental island arc. The Early–Middle Jurassic (Anyao and Yangshuzhuang Formations) provenances are mainly derived from North Qinling and partially from the eroded recycled felsic sedimentary covers of Taihang Mountain. In the late stage of Middle Jurassic (Ma’ao Formation), Taihang Mountain has been the primary source to Jiyuan basin. We conclude that the Jurassic rocks of Jiyuan basin reveal the progressive uplift and denudation processes of the Taihang Mountain.  相似文献   

20.
杨开辉 《现代地质》1990,4(1):78-89
元素之间的相关特征一直是地球化学过程的重要判据。但通常只有少数几个元素的相关特征为人们所采用。本文通过对大庄科花岗杂岩系列研究表明,许多元素相互之间都存在着显著的线性相关特征,它们是协同共变的——协变特征;另一些元素包括成矿元素,挥发份等,不呈协变特征。前者可能反映岩浆的状态、结构等内部特征和岩浆过程;后者反映了岩浆的成矿专属性特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号