首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The effects of slope, cover and surface roughness on rainfall runoff, infiltration and erosion were determined at two sites on a hillside vineyard in Napa County, California, using a portable rainfall simulator. Rainfall simulation experiments were carried out at two sites, with five replications of three slope treatments (5%, 10% and 15%) in a randomized block design at each site (0%bsol;64 m2 plots). Prior to initiation of the rainfall simulations, detailed assessments, not considered in previous vineyard studies, of soil slope, cover and surface roughness were conducted. Significant correlations (at the 95% confidence level) between the physical characteristics of slope, cover and surface roughness, with total infiltration, runoff, sediment discharge and average sediment concentration were obtained. The extent of soil cracking, a physical characteristic not directly measured, also affected analysis of the rainfall–runoff–erosion process. Average cumulative runoff and cumulative sediment discharge from site A was 87% and 242% greater, respectively, than at site B. This difference was linked to the greater cover, extent of soil cracking and bulk density at site B than at site A. The extent of soil cover was the dominant factor limiting soil loss when soil cracking was not present. Field slopes within the range of 4–16%, although a statistically significant factor affecting soil losses, had only a minor impact on the amount of soil loss. The Horton infiltration equation fit field data better than the modified Philip's equation. Owing to the variability in the ‘treatment’ parameters affecting the rainfall–runoff–erosion process, use of ANOVA methods were found to be inappropriate; multiple‐factor regression analysis was more useful for identifying significant parameters. Overall, we obtained similar values for soil erosion parameters as those obtained from vineyard erosion studies in Europe. In addition, it appears that results from the small plot studies may be adequately scaled up one to two orders of magnitude in terms of land areas considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
The aim of this study was to investigate how the spatial distribution of grass influenced run-off and erosion from a hillslope with loess and cinnamon soils in the rocky area of Northern China. We set up a trial to test the two soils with different treatments, including bare soil (BS), grass strips on the upper (UGS) and lower (DGS) parts of the slope, grass cover over the entire slope (GS), and a grass carpet on the lower part of the slope (GC), under simulated rainfall conditions. The results showed that the run-off coefficients for the loess and cinnamon soils decreased by between 4% and 20% and by between 2% and 37%, respectively, when covered with grass. Grass spatial distribution had little effect on the run-off, but more effect on erosion than vegetation coverage degree. The most effective location of grass cover for decreasing hillslope erosion was at the foot, and the high efficiency was mainly due to controlling of rill formation and sediment deposition. The soil loss from GS, DGS, and GC on the loess and cinnamon soils was between 77% and 93% less and 55% and 80% less, respectively, compared with the loss from BS. However, the soil characteristics had little effect on soil erosion for well-vegetated slopes. The results highlight the importance of vegetation re-establishment at the foot of hillslope in controlling soil erosion.  相似文献   

3.
Changing fire regimes and prescribed‐fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush‐steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h–1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post‐fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse‐textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre‐burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post‐fire. Erosion remained above pre‐burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post‐fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre‐existing strong soil‐water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low‐return‐interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high‐intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply‐sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ‘background’ or fire‐induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

4.
The impacts of climate change on storm runoff and erosion in Mediterranean watersheds are difficult to assess due to the expected increase in storm frequency coupled with a decrease in total rainfall and soil moisture, added to positive or negative changes to different types of vegetation cover. This report, the second part of a two‐part article, addresses this issue by analysing the sensitivity of runoff and erosion to incremental degrees of change (from ? 20 to + 20%) to storm rainfall, pre‐storm soil moisture, and vegetation cover, in two Mediterranean watersheds, using the MEFIDIS model. The main results point to the high sensitivity of storm runoff and peak runoff rates to changes in storm rainfall (2·2% per 1% change) and, to a lesser degree, to soil water content (?1·2% per 1% change). Catchment sediment yield shows a greater sensitivity than within‐watershed erosion rates to both parameters: 7·8 versus 4·0% per 1% change for storm rainfall, and ? 4·9 versus ? 2·3% per 1% change for soil water content, indicating an increase in sensitivity with spatial scale due to changes to sediment connectivity within the catchment. Runoff and erosion showed a relatively low sensitivity to changes in vegetation cover. Finally, the shallow soils in one of the catchments led to a greater sensitivity to changes in storm rainfall and soil moisture. Overall, the results indicate that decreasing soil moisture levels caused by climate change could be sufficient to offset the impact of greater storm intensity in Mediterranean watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Soil moisture is a key process in the hydrological cycle. During ecological restoration of the Loess Plateau, soil moisture status has undergone important changes, and infiltration of soil moisture during precipitation events is a key link affecting water distribution. Our study aims to quantify the effects of vegetation cover, rainfall intensity and slope length on total infiltration and the spatial variation of water flow. Infiltration data from the upper, middle and lower slopes of a bare slope, a natural grassland and an artificial shrub grassland were obtained using a simulated rainfall experiment. The angle of the study slope was 15° and rainfall intensity was set at 60, 90, 120, 150, and 180 mm/hr. The effect these factors have on soil moisture infiltration was quantified using main effect analysis. Our results indicate that the average infiltration depth (ID) of a bare slope, a grassland slope and an artificial shrub grassland slope was 46.7–73.3, 60–80, and 60–93.3 cm, respectively, and average soil moisture storage increment was 3.5–5.7, 5.0–9.4, and 5.7–10.2 mm under different rainfall intensities, respectively. Heavy rainfall intensity and vegetation cover reduced the difference of soil infiltration in the 0–40 cm soil layer, and rainfall intensity increased surface infiltration differences on the bare slope, the grassland slope and the artificial shrub grassland slope. Infiltration was dominated by rainfall intensity, accounting for 63.03–88.92%. As rainfall continued, the contribution of rainfall intensity to infiltration gradually decreased, and the contribution of vegetation cover and slope length to infiltration increased. The interactive contribution was: rainfall intensity * vegetation cover > vegetation cover * slope length > rainfall * slope length. In the grass and shrub grass slopes, lateral flow was found at a depth of 23–37 cm when the slope length was 5–10 m, this being related to the difference in soil infiltration capacity between different soil layers formed by the spatial cross-connection of roots.  相似文献   

6.
Soil erosion hinders the recovery and development of ecosystems in semiarid regions. Rainstorms, coupled with the absence of vegetation and improper land management, are important causes of soil erosion in such areas. Greater effort should be made to quantify the initial erosion processes and try to find better solutions for soil and water conservation. In this research, 54 rainfall simulations were performed to assess the impacts of vegetation patterns on soil erosion in a semiarid area of the Loess Plateau, China. Three rainfall intensities (15 mm h‐1, 30 mm h‐1 and 60 mm h‐1) and six vegetation patterns (arbors‐shrubs‐grass ‐A‐S‐G‐, arbors‐grass‐shrubs ‐A‐G‐S‐, shrubs‐arbors‐grass ‐S‐A‐G‐, shrubs‐grass‐arbors ‐S‐G‐A‐, grass‐shrubs‐arbors ‐G‐S‐A‐ and grass‐arbors‐shrubs ‐G‐A‐S‐) were examined at different slope positions (summits, backslopes and footslopes) in the plots (33.3%, 33.3%, 33.3%), respectively. Results showed that the response of soil erosion to rainfall intensity differed under different vegetation patterns. On average, increasing rainfall intensity by 2 to 4 times induced increases of 3.1 to 12.5 times in total runoff and 6.9 to 46.4 times in total sediment yield, respectively. Moreover, if total biomass was held constant across the slope, the patterns of A‐G‐S and A‐S‐G (planting arbor at the summit position) had the highest runoff (18.34 L m‐2 h‐1) and soil losses (197.98 g m‐2 h‐1), while S‐A‐G had the lowest runoff (5.51 L m‐2 h‐1) and soil loss (21.77 g m‐2 h‐1). As indicated by redundancy analysis (RDA) and Pearson correlation results, a greater volume of vegetation located on the back‐ and footslopes acted as effective buffers to prevent runoff generation and sediment yield. Our findings indicated that adjusting vegetation position along slopes can be a crucial tool to control water erosion and benefit ecosystem restoration on the Loess Plateau and other similar regions of the world. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the controls of vegetation on runoff and erosion dynamics in the dryland environment of Jornada, New Mexico, USA. As the American southwest has seen significant shifts in the dominant vegetation species in the past 150 years, an understanding of the vegetation effects on hydrological and erosional processes is vital for understanding and managing environmental change. Small‐scale rainfall simulations were carried out to identify the hydrological and erosional processes resulting from the grassland and shrubland vegetation species. Results obtained using tree‐regression analysis suggested that the primary vegetation control on runoff and erosion is the shrub type and canopy density, which directly affects the local microtopographic gradient of mounds beneath the shrubs. Significant interactions and feedbacks were found to occur among the local mound gradient, crust cover, soil aggregate stability and antecedent soil moisture between the different vegetation species for both the runoff and erosion responses. Although some of the shrub species were found to produce higher sediment yields than the grass species, the distinguishing feature of the grassland was the significantly higher enrichment in the fine sediment fraction compared to all other surface cover types. This enrichment in fines has important implications for nutrient movement in such environments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Planting of sand‐binding vegetation in the Shapotou region on the southeastern edge of the Tengger Desert began in 1956. The revegetation programme successfully stabilized formerly mobile dunes in northern China, permitting the operation of the Baotou‐Lanzhou railway. Long‐term monitoring has shown that the revegetation programme produced various ecological changes, including the formation of biological soil crusts (BSCs). To gain insight into the role of BSCs in both past ecological change and current ecological evolution at the revegetation sites, we used field measurements and HYDRUS‐1D model simulations to investigate the effects of BSCs on soil hydrological processes at revegetated sites planted in 1956 and 1964 and at an unplanted mobile dune site. The results demonstrate that the formation of BSCs has altered patterns of soil water storage, increasing the moisture content near the surface (0–5 cm) while decreasing the moisture content in deeper layers (5–120 cm). Soil evaporation at BSC sites is elevated relative to unplanted sites during periods when canopy coverage is low. Rainfall infiltration was not affected by BSCs during the very dry period that was studied (30 April to 30 September 2005); during periods with higher rainfall intensity, differences in infiltration may be expected due to runoff at BSC sites. The simulated changes in soil moisture storage and hydrological processes are consistent with ongoing plant community succession at the revegetated sites, from deep‐rooted shrubs to more shallow‐rooted herbaceous species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Biogeotextiles can be used to facilitate the formation of vegetation cover and to reduce soil erosion.Studies have demonstrated that only biogeotextile or vegetation cover can greatly reduce soil erosion.However, information about the effects of the combination of biogeotextile and vegetation cover on soil erosion is still limited, despite that the combination is the commonly practical form for bare road slope protection. Experimental plots, consisting of a relatively loose surface layer and a c...  相似文献   

11.
Soil and nutrient loss play a vital role in eutrophication of water bodies. Several simulated rainfall experiments have been conducted to investigate the effects of a single controlling factor on soil and nutrient loss. However, the role of precipitation and vegetation coverage in quantifying soil and nutrient loss is still unclear. We monitored runoff, soil loss, and soil nutrient loss under natural rainfall conditions from 2004 to 2015 for 50–100 m2 runoff plots around Beijing. Results showed that soil erosion was significantly reduced when vegetation coverage reached 20% and 60%. At levels below 30%, nutrient loss did not differ among different vegetation cover levels. Minimum soil N and P losses were observed at cover levels above 60%. Irrespective of the management measure, soil nutrient losses were higher at high-intensity rainfall (Imax30>15 mm/h) events compared to low-intensity events (p < 0.05). We applied structural equation modelling (SEM) to systematically analyze the relative effects of rainfall characteristics and environmental factors on runoff, soil loss, and soil nutrient loss. At high-intensity rainfall events, neither vegetation cover nor antecedent soil moisture content (ASMC) affected runoff and soil loss. After log-transformation, soil nutrient loss was significantly linearly correlated with runoff and soil loss (p < 0.01). In addition, we identified the direct and indirect relationships among the influencing factors of soil nutrient loss on runoff plots and constructed a structural diagram of these relationships. The factors positively impacting soil nutrient loss were runoff (44%–48%), maximum rainfall intensity over a 30-min period (18%–29%), rainfall depth (20%–27%), and soil loss (10%–14%). Studying the effects of rainfall and vegetation coverage factors on runoff, soil loss, and nutrient loss can improve our understanding of the underlying mechanism of slope non-point source pollution.  相似文献   

12.
Wildfires raise concerns over the risk of accelerated erosion as a result of increased overland flow and decreased protection of the soil by litter and ground vegetation cover. We investigated these issues following the 1994 fires that burnt large areas of native Eucalyptus forest surrounding Sydney, Australia. A review of previous studies identifies the fire and rainfall conditions that are likely to lead to increased runoff and accelerated erosion. We then compare runoff and erosion between burnt and unburnt sites for 10 months after the 1994 fires. At the scale of hillslope plots, the 1994 fire increased runoff by enhancing soil hydrophobicity, and greatly increased sediment transport, mainly through the reduced ground cover, which lowered substantially the threshold for initial sediment movement. However, both runoff and sediment transport were very localized, resulting in little runoff or sediment yield after the fire at the hillslope catchment scale. We identify that after moderately intense fires, rainfall events of greater than one year recurrence interval are required to generate substantial runoff and sediment yield. Such events did not occur during the monitoring period. Past work shows that mild burns have little effect on erosion, and it is only after the most extreme fires that erosion is produced from small, frequent storms. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
《国际泥沙研究》2023,38(1):49-65
Severe erosion is caused by intense rainfall in tropical regions. The erodible soil of steep hill slopes, accompanied by destruction of vegetation due to human interventions results in accelerated erosion. A sustainable and cost-effective solution such as vetiver grass (Chrysopogon zizanioides) is, thus, required to control the erosion process. In the current study, 6 small-scale glass models: 1 bare and 5 with vetiver grass, having a slope angle of 37° have been constructed. One year after planting, artificial rainfall of extremely high intensity was applied to all 6 small models and the role of vetiver canopy and roots in erosion and runoff control was observed. To see the effect of soil texture, one among these 5 models was made with silty sand and others contained sandy silt. The results demonstrated that, for sandy silt, the inclusion of vetiver reduced the soil loss by 94%–97%, and soil detachment rates were lowered by 95%. The average runoff also was reduced by 21%. The canopy cover showed a positive impact on reducing both quantities. An increase in average root diameter from 1.6 to 2.5 mm increases the soil loss due to its negative impact on added cohesion. The added cohesion showed a linearly negative correlation with soil loss. A composite system of vetiver and jute geotextile was most effective in erosion reduction among 4 vegetated models with sandy silt. Under same vetiver planting layout, the grass covered model of silty sand yielded 84% lower erosion and 62.5% lower runoff than the grass covered one with sandy silt. Thus, vetiver was more effective in erosion and runoff reduction for soil with a greater percentage of sand, and soil type dominated the erosion process.  相似文献   

14.
Although numerous studies have acknowledged that vegetation can reduce erosion, few process-based studies have examined how vegetation cover affect runoff hydraulics and erosion processes. We present field observations of overland flow hydraulics using rainfall simulations in a typical semiarid area in China. Field plots (5 × 2 m2) were constructed on a loess hillslope (25°), including bare soil plot as control and three plots with planted forage species as treatments—Astragalus adsurgens, Medicago sativa and Cosmos bipinnatus. Both simulated rainfall and simulated rainfall + inflow were applied. Forages reduced soil loss by 55–85% and decreased overland flow rate by 12–37%. Forages significantly increased flow hydraulic resistance expressed by Darcy–Weisbach friction factor by 188–202% and expressed by Manning's friction factor by 66–75%; and decreased overland flow velocity by 28–30%. The upslope inflow significantly increased overland flow velocity by 67% and stream power by 449%, resulting in increased sediment yield rate by 108%. Erosion rate exhibited a significant linear relationship with stream power. M. sativa exhibited the best in reducing soil loss which probably resulted from its role in reducing stream power. Forages on the downslope performed better at reducing sediment yield than upslope due to decreased rill formation and stream power. The findings contribute to an improved understanding of using vegetation to control water and soil loss and land degradation in semiarid environments.  相似文献   

15.
Surface hydrological behaviour is important in drylands because it affects the distribution of soil moisture and vegetation and the hydrological functioning of slopes and catchments. Microplot scale run‐off can be relatively easily measured, i.e. by rainfall simulations. However, slope or catchment run‐off cannot be deduced from microplots, requiring long‐time monitoring, because run‐off coefficients decrease with increasing drainage area. Therefore, to determine the slope length covered by run‐off (run‐off length) is crucial to connect scales. Biological soil crusts (BSCs) are good model systems, and their hydrology at slope scale is insufficiently known. This study provides run‐off lengths from BSCs, by field factorial experiments using rainfall simulation, including two BSC types, three rain types, three antecedent soil moistures and four plot lengths. Data were analysed by generalized linear modelling, including vascular plant cover as covariates. Results were the following: (i) the real contributing area is almost always much smaller than the topographical contributing area; (ii) the BSC type is key to controlling run‐off; run‐off length reached 3 m on cyanobacterial crust, but hardly over 1 m on lichen crust; this pattern remained through rain type or soil moisture; (iii) run‐off decreased with BSC development because soil sealing disappears; porosity, biomass and roughness increase and some changes occur in the uppermost soil layer; and (iv) run‐off flow increased with both rain type and soil moisture but run‐off coefficient only with soil moisture (as larger rains increased both run‐off and infiltration); vascular plant cover had a slight effect on run‐off because it was low and random. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Rainfall is considered as the dominant water replenishment in desert ecosystems, and the conversion of rainfall into soil water availability plays a central role in sustaining the ecosystem function. In this study, the role of biological soil crusts (BSCs), typically formed in the revegetated desert ecosystem in the Tengger Desert of China, in converting rainfall into soil water, especially for the underlying soil moisture dynamics, was clarified by taking into account the synthetic effects of BSCs, rainfall characteristics, and antecedent soil water content on natural rainfall conditions at point scale. Our results showed that BSCs retard the infiltration process due to its higher water holding capacity during the initial stage of infiltration, such negative effect could be offset by the initial wet condition of BSCs. The influence of BSCs on infiltration amount was dependent on rainfall regime and soil depth. BSCs promoted a higher infiltration through the way of prolonged water containing duration in the ground surface and exhibited a lower infiltration at deep soil layer, which were much more obvious under small and medium rainfall events for the BSCs area compared with the sand area. Generally, the higher infiltration at top soil layer only increased soil moisture at 0.03 m depth; in consequence, there was no water recharge for the deep soil, and thus, BSCs had a negative effect on soil water effectiveness, which may be a potential challenge for the sustainability of the local deep‐rooted vegetation under the site specific rainfall conditions in northwestern China.  相似文献   

17.
Strategies for erosion control on a railway embankment batter (side slope) are quantitatively evaluated in this paper. The strategies were centred on control (‘do nothing’ treatment), grass seeding, gypsum application, jute mat (an erosion control blanket) placement and planting hedgerows of Monto vetiver grass. Rainfall and runoff were monitored at 1 min intervals on 10 m wide embankment batter plots during 1998 and 1999. Total bedload and suspended sediment eroded from the plots were also measured but only for a group of storm events within sampling intervals. It has been demonstrated that vetiver grass is not cost‐effective in controlling erosion on railway batters within Central Queensland region. Seeding alone could cause 60% reduction in the erosion rate compared with the control treatment. Applying gypsum to the calcium‐deficient soil before seeding yielded an additional 25% reduction in the erosion rate. This is the result, primarily, of 100% grass cover establishment within seven months of sowing. Therefore, for railway embankment batter erosion control, the emphasis needs to be on rapid establishment of 100% grass cover. For rapid establishment of grass cover, irrigation is necessary during the initial stages of growth as the rainfall is unpredictable and the potential evaporation exceeds rainfall in the study region. The risk of seeds and fertilizers being washed out by short‐duration and high‐intensity rainfall events during the establishment phase may be reduced by the use of erosion control blankets on sections of the batters. Accidental burning of grasses on some plots caused serious erosion problems, resulting in very slow recovery of grass growth. It is therefore recommended that controlled burning of grasses on railway batters should be avoided to protect batters from being exposed to severe erosion. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Evaluating the benefits of sediment and runoff reduction in different vegetation types is essential for studying the mechanisms of soil and water conservation on the Loess Plateau.The experiment was conducted in shrub-grass plots with nine levels of mixed vegetation coverage from 0%to 70%,three slopes(10,15,and 20)and two rainfall intensities(1.0 and 2.5 mm/min).The results showed that the vegetation coverage and slope gradient significantly affect runoff and sediment yield.Shrub-grass vegetation coverage had a significant effect on the runoff start-time,runoff flow velocity,runoff rate,and soil erosion rate on hillslopes.Mixed vegetation coverage could effectively delay the runoff starttime and decrease the runoff flow velocity.However,the effects of the slope gradient on runoff and sediment yield are opposite to those of vegetation coverage.Shrub-grass vegetation coverage could effectively increase runoff and sediment yield reduction benefits,while their benefits were affected by the rainfall intensity.At the 1.0 mm/min rainfall intensity,the reduction in the sediment production rate was greater than that under the 2.5 mm/min intensity.However,when the shrub-grass vegetation coverage exceeded 42%,the runoff reduction benefit was more obvious at higher rainfall intensities.The cumulative sediment yield increased with increasing cumulative runoff,and the rate of increase in the cumulative runoff was greater than that of the cumulative sediment yield with increasing of shrub-grass vegetation coverage.Moreover,there was a power function relationship between cumulative sediment yield and cumulative runoff yield(P<0.05).Our paper is expected to provide a good reference on the ecological environment and vegetation construction on the Loess Plateau.  相似文献   

19.
Despite the high risk of erosion in olive orchards located in mountainous areas in Spain, little research has been carried out to account for the complexity and interaction of the natural processes of runoff and soil erosion on the catchment scale or small catchment scale. In this study, a microcatchment of 6·7 ha in a mountainous area under no‐tillage farming with bare soil was set up to record runoff and sediment. Soil erosion and runoff patterns were monitored over a two‐year period. Totally, 22 events were observed. The data were analysed, and then used to calibrate the AnnAGNPS model, which allowed us to complete the data period and describe the hydrological and erosive behaviour on a monthly and annual basis. A high variability in catchment responses was observed, due to differences in the storms and to the effect of the surface soil moisture content. Maximum intensities of 10 and 30 min determined the final runoff values while the total sediment loads were dependent on the rainfall depth. The impact of management on the reduction of porosity can explain the relationship between runoff and intensity in the microcatchment. However, the impact of the spatial scale meant that the transport of sediment required substantial rainfall depths to ensure a continuous flow from the hillslopes. The results of the calibration (>0·60 and >0·75) on the event and monthly scale confirmed the applicability of AnnAGNPS to predict runoff and erosion in the microcatchment. The predicted average runoff coefficient was 3·3% for the study period and the total average sediment loads, 1·3 Mg/ha/yr. Despite these low values, the model simulation showed that much larger runoff coefficients and soil losses can be expected for periods with several consecutive years in which the annual rainfall depth was over 500 mm. The use of cover is recommended to prevent the high levels of erosion associated with these conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Soil hydrology was investigated in the Guadelperalón experimental watershed in order to determine the influence of land use and vegetation cover on runoff and infiltration within the Dehesa land system. Five soil–vegetation units were selected: (1) tree cover, (2) sheep trials, (3) shrub cover, (4) hillslope grass and (5) bottom grass. The results of the simulated rainfall experiments performed at an intensity of 56·6 mm h−1 during one hour on plots of 0·25 m2, and the water drop penetration time test indicate the importance of water repellency in the Dehesa land system under drought conditions. Low infiltration rates (c. 9–44 mm h−1) were found everywhere except at shrub sites and in areas with low grazing pressure. Soil water repellency greatly reduced infiltration, especially beneath Quercus ilex canopies, where fast ponding and greater runoff rates were observed. The low vegetation cover as a consequence of a prolonged drought and grazing pressure, in conjunction with the soil water repellency, induces high runoff rates (15–70 per cent). In spite of this, macropore fluxes were found in different locations, beneath trees, on shrub-covered surfaces, as well as at sites with a dominance of herbaceous cover. Discontinuity of the runoff fluxes due to variations in hydrophobicity causes preferential flows and as a consequence deeper infiltration, especially where macropores are developed. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号