首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract

Marine soft clay with a high salt concentration is widely distributed in coastal areas. In this study, cement-based composites consisting of cement, silica fume, plant ash and NaOH were used as a substitute for ordinary Portland cement, and the effect of salt (sodium chloride) on the strength development of clay was investigated by unconfined compressive strength (UCS) testing and scanning electron microscopy (SEM). With the addition of sodium chloride (NaCl), the amount of cementitious materials decreased, and the salt (sodium chloride) was considered to consume the cement-based composites. The consumption effect could be quantitatively evaluated by the consumption index of salt (CIS) and the clay-water/cement ratio hypothesis. The relationship between the CIS and curing period and an UCS prediction model of clay stabilized with cement-based composites with different salt contents and curing times were established. The CIS gradually decreased with increasing curing time and cement-based composites content. The accuracy of the prediction model was evaluated by a comparative analysis between the measured strengths and predicted strengths; the deviation was mostly within 10%. SEM analyses were employed to describe the changes in the microstructure of the specimens and the influencing mechanism of salt on clay stabilized with cement-based composites.  相似文献   

2.
Abstract

This paper presents an experimental investigation into the effect of salinity on Atterberg limits, flowability, viscosity and strength properties of cement-stabilized clay minerals. Three groups of clay minerals (illite, kaolinite and montmorillonite) were obtained. Specimens with different porewater salinities were prepared by mixing the air-dried clays with sodium chloride (NaCl) at various salt concentrations (i.e., 0%, 2% 4%, 6% and 8%). Atterberg limits test results indicated that liquid limit and plasticity index decreased insignificantly with increasing salinity for Kaolinite and illite but significantly for montmorillonite. Flow test results indicated that of all specimens of three groups of clay minerals with or without adding cement consistently increase with increasing salinity. The flow value of montmorillonite increased more significantly than kaolinite and illite. Viscosity test results indicated that all the specimens tested behave as Bingham plastic. Flow value consistently decreased with increasing dynamic viscosity or yield stress, regardless of clay mineralogy, porewater salinity and cement amount. Strength test results indicated that all cement-stabilized specimens exhibit strain softening behavior. Unconfined compressive strength for three groups of clay minerals stabilized with cement consistently decreased with increasing salinity indicating that the presence of salt had an adverse effect on the development of strength.  相似文献   

3.
ABSTRACT

Strength and stiffness properties of materials are widely studied and used in civil engineering practice. However, most studies are based on unconfined conditions, which are different from real status of soil. This study investigated the primary yielding and yield locus for cement-stabilized marine clay. In this study, two types of cement-stabilized soils were studied through isotropic compression, triaxial drained shearing, unconfined compression, and bender element testing. Specimens with 20–50% of cement content and 7–90 days of curing period were used for the tests. Stress–strain behavior and primary yielding were evaluated, followed by construction of the primary yield locus. The characteristics of the primary yield locus and its development with curing time then were studied. The results showed that the properties of the primary yield locus were dependent on the type of stabilized soil, but were independent of the cement content and curing period. Thus, the approach provides a way to estimate the primary yield stress and drained stress path before primary yielding for cement-stabilized soil under confined condition. An empirical function was used to fit the primary yield locus. The primary isotropic yield stress was correlated to unconfined compressive strength or maximum shear modulus. Three indirect methods were proposed to predict the primary yield stress for cement-stabilized marine clay. The results showed that the primary yield stress can be estimated with reasonable accuracy.  相似文献   

4.
Abstract

Evaluation of the strength of cement-treated clay with a broad range of mix ratios and curing periods was conducted using unconfined compression tests (UCTs). The influence of cement content, total water content, and curing period on the unconfined compressive strength of cemented clay are investigated. It is found that, at constant total water content, higher cement content results in higher unconfined compressive strength, while the total water content has an opposite effect. A power function can be used to correlate the unconfined compressive strength with the cement content or the total water content. For a fixed mix ratio, the unconfined compressive strength of cement-stabilized clay increases with the curing period, the effect of which can be characterized by a semi-log formula. Also, a strength-prediction model that considers both mix ratios and curing periods for cement-admixed marine clay is developed and validated; the model can capture the effect of clay type by considering the plastic index of untreated soils. It is also proved that the proposed framework for strength development is also applicable for other cement types.  相似文献   

5.
Abstract

The use of soft clay and dredged marine clays as the construction material is challenging. This is because the high water content, high compressibility and low permeability of the clay causing the instability of ground and structure. This detrimental effect of soft clay can be improved by the cement solidification process, which is relatively cheap and efficient. This paper mainly focuses on the study of improvement on the mechanical behavior of cement mixed marine clay. The soil is reconstituted by using ordinary Portland cement of 5%, 10%, 15% and 20% by its mass. The study reveals that cementation of clay significantly improves the peak and residual strength of soil. Similarly, the primary yield stress of the soil is also improved from 16 to 275?kPa as cement content increases from 5% to 20%, respectively. By using statistical tools, the relationships between various parameters are established, which are very important to define the mechanical behavior of the clay. This study reveals that the yield surface of the solidified marine clay is not a smooth elliptical surface. Rather it is composed of two linear surfaces followed by a log-linear surface which can be modeled by using simple parameters obtained from triaxial tests.  相似文献   

6.
A series of tests in both laboratory and field were performed to investigate the engineering and mechanical properties, especially flexural strength, of cement-stabilized soils. The strength of cement-stabilized soils mainly depends on water-to-cement ratio and curing temperature. The higher curing temperature and the longer curing time, the higher strength in cement-stabilized soils generates. The high ratio of water-to-cement results in lower strength. The compressive strength observed in the field is similar to the strength in the laboratory. Field tests on a cement-stabilized soil layer indicate that the strength is significantly affected by the thickness of the improved layer, which is directly related to the moment of inertia. In addition, the failure shape observed in a cement-stabilized layer in the field looks likes a bending failure type, because the flexural tensile strength, rather than the compressive strength, mainly dominates the failure of cement-stabilized layer. The flexural tensile strength is closely related to the moment of inertia. Therefore, the flexural tensile strength should be considered for determining the thickness and strength in improvement of soft clay.  相似文献   

7.
ABSTRACT

A series of tests in both laboratory and field were performed to investigate the engineering and mechanical properties, especially flexural strength, of cement-stabilized soils. The strength of cement-stabilized soils mainly depends on water-to-cement ratio and curing temperature. The higher curing temperature and the longer curing time, the higher strength in cement-stabilized soils generates. The high ratio of water-to-cement results in lower strength. The compressive strength observed in the field is similar to the strength in the laboratory. Field tests on a cement-stabilized soil layer indicate that the strength is significantly affected by the thickness of the improved layer, which is directly related to the moment of inertia. In addition, the failure shape observed in a cement-stabilized layer in the field looks likes a bending failure type, because the flexural tensile strength, rather than the compressive strength, mainly dominates the failure of cement-stabilized layer. The flexural tensile strength is closely related to the moment of inertia. Therefore, the flexural tensile strength should be considered for determining the thickness and strength in improvement of soft clay.  相似文献   

8.
Compacted sand–bentonite mixtures have been used as a good alternative hydraulic barrier material to compacted clays. This study presents the results of a laboratory investigation on the strength characteristics of cement-stabilized sand–bentonite (CSB) mixtures and the effects of adding small amounts of fibers and metakaolin to the mixture material for strength improvement. The strength characteristics of the mixture materials were examined using unconfined compressive strength (UCS) tests and splitting tensile strength (STS) tests, with emphasis on evaluating the effects of different proportions of bentonite, fibers, and metakaolin within the CSB mixtures with a constant value of cement content. The test results indicated that the maximum improvements in UCS and STS were all attained in the CSB mixture with 10% bentonite content, and the inclusion of fibers and metakaolin of 1% each within the same CSB mixture led to an increase in UCS of about 40 and 70%, respectively. The addition of fibers also increased the ductility of the mixture material and was more effective for the improvement of tensile strength compared to that of metakaolin. The contribution of metakaolin to early-age strength (i.e., 3 and 7 days) of CSB mixture was found to be small due to the relatively low cement content in the mixture.  相似文献   

9.
Salt in soil can cause cementation effect and increase the shear strength and stiffness of soil during the drying process. In this paper, an experimental study is presented to explore the strength, stiffness, and particle level structure of a salt-cemented sand at the dry state. Unconfined compression tests were carried out on sands with various amounts of precipitated dry salt. Scanning electron microscopic and elemental analysis were also conducted. The study shows that the strength and stiffness of sand can increase significantly with salt content. The strength versus salt content curve displays a convex shape, instead of a concave shape as found in cemented or biocemented sands. This implies that the effect of dry salt on soil strength is strong at low levels of salt content. The microscopic and elemental analysis evidences that salt tends to precipitate at particle contacts and form bridges between particles at relatively low salt content. The results presented in the paper may explain why even small amount of salt can lead to an overestimation of soil strength.  相似文献   

10.
实施了水泥固化粉土和高岭土的室内渗透试验,在分析水泥土灰水比和龄期对渗透性影响的基础上,提出了不含拟合参数的水泥土长期渗透系数预测式。试验结果表明,与原土种类无关,同一龄期水泥土的渗透系数随灰水比的增大线性减小;粉土水泥土的渗透系数大于相同灰水比、相同龄期高岭土水泥土的渗透系数;水泥土渗透系数随灰水比的降低速率与原土的种类及龄期有关,粉土水泥土渗透系数随灰水比的降低速率大于相同龄期高岭土水泥土的渗透系数降低速率;与原土种类无关,水泥土的渗透系数随龄期的增大逐渐降低,在龄期超过28 d后,渗透系数随龄期的降低速率减小。预测式预测的结果基本反映了水泥土渗透系数随龄期的变化规律。  相似文献   

11.
The soft clay of Ariake Bay, in western Kyushu, Japan covers several hundred square kilometers. Ariake clay consists of the principal clay minerals namely smectite, illite, kaolinite and vermiculite, and other minerals in lesser quantity. The percentage of the principal clay mineral can vary significantly. The percent clay size fraction and the salt concentration can also vary significantly. In view of the importance of undrained shear strength in geotechnical engineering practice, its behavior has been studied with respect to variation in salt concentration. Basically two mechanisms control the undrained strength in clays, namely (a) cohesion or undrained strength is due to the net interparticle attractive forces, or (b) cohesion is due to the viscous nature of the double layer water. Concept (a) operates primarily for kaolinitic soil, and concept (b) dominates primarily for montmorillonitic soils. In Ariake clay, different clay minerals with different exchangeable cations and varying ion concentration in the pore water and varying nonclay size fraction are present. In view of this while both concepts (a) and (b) can coexist and operate simultaneously, one of the mechanisms dominates. For Isahaya clay, concept (a), factors responsible for an increase in level of flocculation and attractive forces result in higher undrained strength. Increase in salt concentration increases the remolded undrained strength at any moisture content. For Kubota and Kawazoe clays, concept (b) factors responsible for an expansion of diffuse double layer thickness, resulting in higher viscous resistance, increase the undrained shear strength, that is, as concentration decreases, the undrained strength increases at any moisture content. The liquid limit of Isahaya clay increases with increase in ion concentration and a marginal decrease is seen for both Kubota and Kawazoe clays, and their behavior has been explained satisfactorily.  相似文献   

12.
Two aspects of deep mixing method, the difference relating strength gain in dry jet mixing (DJM, reagent powder introduced into the ground) and cement deep mixing (CDM, reagent slurry introduced into the ground), and prediction of unconfined compressive strength of cement stabilized marine clay, are discussed in this paper. The first part of this paper concentrates on the difference between DJM and CDM on strength gain, and suggests a guideline for DJM and CDM selection. An indicator in terms of water content ratio, which is defined as the ratio of water content to the liquid limit of the soil, is presented by statistical analysis from the laboratory and field test data as a guideline for the selection of DJM or CDM. Based on the laboratory test data, a mathematical model relating strength gain of cement stabilized marine clay to related variables is developed. A new simple index designated as total water-cement ratio, which is defined as the ratio of water weight in the soil-cement to the weight of cement in dry state, is proposed for interpretation of test data of soil-cement. The proposed method is then verified with available test data published by other different researchers.  相似文献   

13.
Abstract

A series of direct shear tests were performed on cement-admixed silty clay to investigate the effect of cement content and nano-magnesia (MgO) on its shear strength properties. For each normal stress, shear strength increased with cement content. However, an obvious increment in shear strength was achieved when the cement content was adjusted from 13% to 17%. Both cohesion and friction angle of cemented soil increased with cement content, and exponential function was adopted to correlate both the factors with cement content. For cement content of 10% investigated in this study, the optimum nano-MgO content was 10‰, wherein the cohesion could reach the peak value. The microstructure of the mixture revealed that the structure of the mixture was compacted for the optimum nano-MgO content. However, micro-cracks were formed when the amount of nano-MgO exceeded its optimum content.  相似文献   

14.
Two aspects of deep mixing method, the difference relating strength gain in dry jet mixing (DJM, reagent powder introduced into the ground) and cement deep mixing (CDM, reagent slurry introduced into the ground), and prediction of unconfined compressive strength of cement stabilized marine clay, are discussed in this paper. The first part of this paper concentrates on the difference between DJM and CDM on strength gain, and suggests a guideline for DJM and CDM selection. An indicator in terms of water content ratio, which is defined as the ratio of water content to the liquid limit of the soil, is presented by statistical analysis from the laboratory and field test data as a guideline for the selection of DJM or CDM. Based on the laboratory test data, a mathematical model relating strength gain of cement stabilized marine clay to related variables is developed. A new simple index designated as total water-cement ratio, which is defined as the ratio of water weight in the soil-cement to the weight of cement in dry state, is proposed for interpretation of test data of soil-cement. The proposed method is then verified with available test data published by other different researchers.  相似文献   

15.
The purpose of this article is to investigate a possible use of lime for the stabilization of base soils underlying salt evaporation ponds in Çamalt? Solar Marine Salt Plant. The plant is located on the old Gediz River Delta, on the north shore of the Izmir Bay-Turkey, where alluvial deltaic soft marine sediments constitute the local soil condition. The low bearing capacity of the pond base soils results in some problems on the mechanical harvest of the solar salt. Therefore, stabilization was taken into consideration for improving the productivity of the salt plant. For this purpose, bench-scale laboratory tests were performed on the specimens that had been sampled from the bases of the salt evaporation pond to investigate the influence of lime on the unconfined compressive strength (UCS) of these marine sediments. By interpreting the pH test results and consistency limits of the lime stabilized soils, optimum lime content was determined as 8%. The verification of the long-term pozzolanic reactions for the optimum lime content was conducted by performing UCS tests with up to six months curing periods, along with the microstructural analysis through X-ray diffraction analysis (XRD) and a scanning electron microscope (SEM). Long-term tests revealed that the optimum lime content successfully sustained the required pozzolanic reactions, and a strength gain of 500% was achieved for a six-month curing period.  相似文献   

16.
Abstract

A novel approach to mitigate the environmental concerns associated with cement industry is to replace Portland cement with low carbon alternative materials such as fly ash-based geopolymer cement. Hence, reactive MgO-activated low-calcium Class F fly ash was employed in comparison to Na2SO4-activated fly ash to stabilize a lacustrine soil reused potentially in soft coastal reclamation projects and as reinforced aggregates for anti-corrosion in marine engineering. The microstructural and strength properties were investigated with series of tests including X-ray diffraction (XRD), thermogravimetry/differential thermogravimetry (TG/DTG), mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and unconfined compressive strength (UCS). The results demonstrate that the main hydration products in reactive MgO- and Na2SO4-fly ash-solidified soils are, respectively, magnesium silicate hydrate (M-S-H) gel and sodium aluminosilicate hydrate (N-A-S-H) gel. This finding is reconfirmed by the weight loss of solidified samples at 40–200?°C, which is correspondingly attributed to the dehydration of magnesium silicate hydrate (M-S-H) gel and sodium aluminosilicate hydrate (N-A-S-H) gel. The morphology and bonding ability of hydration products affects the microstructure and long-term strength of solidified soils. The microstructural change identified from SEM images coincides well with the quantitative evolution of pore structure. The pores with radius of 0.01–1?µm, i.e., micropore and mesopore, are supposed to be the dominant pores in reactive MgO- and Na2SO4-activated fly ash-solidified soils. The comparison of UCS indicates reactive MgO-activated low-Ca fly ash behaves much superior to Na2SO4-activated fly ash in enhancing the long-term compressive strength of soils. This study provides insight into the promising potential of low-Ca fly ash activated by immerging material – reactive MgO to replace cement in soil improvement.  相似文献   

17.
Abstract

Short waste fibers are used to suppress the expansion and improve the tensile strength of cement-stabilized marine clay (CMC). The fiber-reinforced mechanism and characteristics are revealed by experimental and numerical methods. First, the curing effect of the CMC when adding a composite curing agent is observed by scanning electronic microscopy, as is the contact surface between the fiber and the matrix. Then, the expansion rate and the tensile strength of fiber-reinforced cement-stabilized marine clay (FCMC) are illustrated by an expansion experiment and a direct tensile experiment, respectively. The results show that the sample with the cement content of 0.1% and the fiber length of 10?mm is the best in terms of strength enhancement and expansion inhibition. Finally, the mechanism of fiber reinforcement is discussed following a single fiber pullout experiment and some comprehensive explanations are proposed to verify the results of the tensile experiment. A numerical simulation of a single fiber pullout from a matrix is established by using a cohesive contact model. The comparison between the numerical results and the experimental results shows that the two models can be in good agreement, indicating that the calculation model of the interaction between the fiber and the matrix is realistic.  相似文献   

18.
Large amounts of sediments are dredged annually from Chinese oceans. Dredged materials (DMs) possess poor geotechnical properties and are normally treated as waste. This paper presents the first large-scale engineering application of DM solidification treatment in China. The technique has been used to treat approximately 1.8?×?106?m3 of DM from Taihu Lake to produce fill soils. Portland cement was chosen as the solidification material, the amount of which is confirmed through indoor unconfined compressive strength (UCS) tests. Special solidification machines process DM at 120?m3/hours. Field-based DM solidification engineering began in September 2006. Curing specimens were examined over 28 days. Results show that both UCS and failure strain of solidified DM could meet fill soil requirements. Bearing capacity was also assessed with a cone penetrometer test. Samples were examined after 2 years (after project completion), and the mean UCS of the specimens was 237.2?kPa, which completely satisfied the engineering request. Wuxi Taihu City Science and Technology Industrial Park has now been established on top of the solidified DM storage yard. The successful engineering of such facilities results in economic and environmental benefits; thus, engineering applications of DM solidification treatment are widely promoted in China.  相似文献   

19.
孔凡玲  王滢  张粮  高盟  吴迪 《海洋工程》2023,41(6):148-157
为研究深海能源土在负压开采过程中含气储层的力学特性,基于含气土赋存理论,提出一种能够控制含气量及气泡大小的制样方法,通过GDS标准应力路径三轴试验系统,开展深海能源土含气储层的固结排水试验研究,分析深海能源土在不同黏土含量及不同含气量下的力学响应规律。研究结果表明:围压变化对深海能源土含气储层的抗剪强度峰值大小影响显著,围压越大抗剪强度峰值越高;黏土含量是决定应力应变曲线变化趋势的关键影响因素,黏土含量越高试样抗剪强度越低,试样抵抗应变软化效应的能力越强;含气土比饱和土体承载能力更低,且承载能力随含气量的增大呈衰减趋势;黏土含量和含气量是深海能源土含气储层抗剪强度指标的重要影响因素,黏土含量、含气量越高,土体自身的总抗剪强度值越低。  相似文献   

20.
将水泥土和周围土体作为研究对象,利用室内化学分析试验得到了离子浓度的时空分布规律,并从腐蚀离子干预水化反应进程和分解水化产物两个过程揭示了海相软土场地水泥土劣化机理。Ca^2+由水泥土向土体中扩散,Mg^2+、SO42^-及Cl^-从土体向水泥土扩散;随着水化反应的进行,Ca^2+不断生成,水泥土中足够多的Ca^2+是保证水化反应进行并维持水化产物稳定的必要条件,Ca^2+不断向土体扩散是水泥土劣化的原因之一;水泥土内部的SO42^-及Cl^-在浓度较低(分别低于9和15 g/L)时有利于水泥土强度的提高,浓度较高时则导致水泥土发生胀裂;水泥土中Mg^2+的存在会阻碍水化产物的生成并分解水化产物,但浓度较低(低于3 g/L)时,影响不明显;土体中Mg^2+、SO42^-及Cl^-浓度高于水泥土中的浓度,在水泥土表层与水化产物反应生成胶结性差及膨胀性高的物质,促使水泥土劣化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号