首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A series of tests in both laboratory and field were performed to investigate the engineering and mechanical properties, especially flexural strength, of cement-stabilized soils. The strength of cement-stabilized soils mainly depends on water-to-cement ratio and curing temperature. The higher curing temperature and the longer curing time, the higher strength in cement-stabilized soils generates. The high ratio of water-to-cement results in lower strength. The compressive strength observed in the field is similar to the strength in the laboratory. Field tests on a cement-stabilized soil layer indicate that the strength is significantly affected by the thickness of the improved layer, which is directly related to the moment of inertia. In addition, the failure shape observed in a cement-stabilized layer in the field looks likes a bending failure type, because the flexural tensile strength, rather than the compressive strength, mainly dominates the failure of cement-stabilized layer. The flexural tensile strength is closely related to the moment of inertia. Therefore, the flexural tensile strength should be considered for determining the thickness and strength in improvement of soft clay.  相似文献   

2.
Abstract

Evaluation of the strength of cement-treated clay with a broad range of mix ratios and curing periods was conducted using unconfined compression tests (UCTs). The influence of cement content, total water content, and curing period on the unconfined compressive strength of cemented clay are investigated. It is found that, at constant total water content, higher cement content results in higher unconfined compressive strength, while the total water content has an opposite effect. A power function can be used to correlate the unconfined compressive strength with the cement content or the total water content. For a fixed mix ratio, the unconfined compressive strength of cement-stabilized clay increases with the curing period, the effect of which can be characterized by a semi-log formula. Also, a strength-prediction model that considers both mix ratios and curing periods for cement-admixed marine clay is developed and validated; the model can capture the effect of clay type by considering the plastic index of untreated soils. It is also proved that the proposed framework for strength development is also applicable for other cement types.  相似文献   

3.
For the purpose of efficient utilization of sediments dredged from harbor, a new method was proposed in this study. Marine silt bricks were made by mixing sediments with cement and gypsum, placing it in a cubic mold with 240 mm in length, 115 mm in width, and 53 mm in height, and curing for certain days. To investigate the effects of cement and initial water content of soil on the mechanical behavior of marine silt bricks, unconfined compressive and flexural strength tests were carried out. Given the same curing time and cement content, the higher the initial water content, the lower the compressive and flexural strength. After 60 days of curing, the compressive strength of marine silt bricks with cement content = 20% and water content = LL (liquid limit) reached approximately 5 MPa. The flexural strength was relatively low. The flexural strength of marine silt bricks with 20% cement and water content = LL was around 1.5 MPa. The compressive and flexural strength decreased with the increase of water/cement ratio. As for the curing time, longer curing time had a positive impact on the compressive strength. The ratio of flexural to compressive strength varied slightly in the range of 0.4–0.5.  相似文献   

4.
Soft clay with high sodium chloride salt concentration is a problem encountered by geotechnical and highway engineers. Chemical stabilization using cement is an attractive method to improve the engineering properties of soft soil. However, very limited studies have been conducted to reveal the effect of salt concentration on the engineering properties of cement-stabilized soil and the reported results in literature are not consistent. The impact of sodium chloride salt on the strength and stiffness properties of cement-stabilized Lianyungang marine clay is studied in this study. The clay with various sodium chloride salt concentrations was prepared artificially and stabilized by various contents of Ordinary Portland cement. A series of unconfined compressive strength (UCS) tests of cement stabilized clay specimen after 7, 14, and 28 days curing periods were carried out. The results indicate that a high sodium chloride salt concentration has a detrimental effect on the UCS and stiffness of cement-stabilized clay. The detrimental effect of salt concentration on the strength and stiffness of cement-stabilized clay directly relates to cement content. Soils mixed with high cement content are more resistant to the negative effect of salts than soils mixed with low cement content. The ratio of modulus of elasticity to UCS of cement treated soil does not have an obvious relationship with salt concentration. The findings of this study present a rational basis for the understanding of the impact of salt on the engineering properties of cement-treated soil.  相似文献   

5.
ABSTRACT

Strength and stiffness properties of materials are widely studied and used in civil engineering practice. However, most studies are based on unconfined conditions, which are different from real status of soil. This study investigated the primary yielding and yield locus for cement-stabilized marine clay. In this study, two types of cement-stabilized soils were studied through isotropic compression, triaxial drained shearing, unconfined compression, and bender element testing. Specimens with 20–50% of cement content and 7–90 days of curing period were used for the tests. Stress–strain behavior and primary yielding were evaluated, followed by construction of the primary yield locus. The characteristics of the primary yield locus and its development with curing time then were studied. The results showed that the properties of the primary yield locus were dependent on the type of stabilized soil, but were independent of the cement content and curing period. Thus, the approach provides a way to estimate the primary yield stress and drained stress path before primary yielding for cement-stabilized soil under confined condition. An empirical function was used to fit the primary yield locus. The primary isotropic yield stress was correlated to unconfined compressive strength or maximum shear modulus. Three indirect methods were proposed to predict the primary yield stress for cement-stabilized marine clay. The results showed that the primary yield stress can be estimated with reasonable accuracy.  相似文献   

6.
Unconfined and triaxial compression tests were carried out to examine the behavior of light-weighted soils (LWS) consisting of expanded polystyrene (EPS), dredged soils, and cement with respect to initial water content. The stress-strain behavior of LWS are analyzed with varying initial water content and silt contents of dredged soils, cement ratio, and confined stress. As initial water contents increase, the compressibility index increases and the preconsolidation pressure was vice versa. As initial water contents increase, the slope of stress-strain curve in elastic zone increases and strain rate at failure decreases and the strain rate at failure was not changed by the being of foams. As initial water contents increase, a compressive strength of LWS decreases. The decrement ratio of compressive strength of LWS with foams increases as cement content increases and initial water contents decreases. The compressive strength increases as silt contents increases.  相似文献   

7.
Compacted sand–bentonite mixtures have been used as a good alternative hydraulic barrier material to compacted clays. This study presents the results of a laboratory investigation on the strength characteristics of cement-stabilized sand–bentonite (CSB) mixtures and the effects of adding small amounts of fibers and metakaolin to the mixture material for strength improvement. The strength characteristics of the mixture materials were examined using unconfined compressive strength (UCS) tests and splitting tensile strength (STS) tests, with emphasis on evaluating the effects of different proportions of bentonite, fibers, and metakaolin within the CSB mixtures with a constant value of cement content. The test results indicated that the maximum improvements in UCS and STS were all attained in the CSB mixture with 10% bentonite content, and the inclusion of fibers and metakaolin of 1% each within the same CSB mixture led to an increase in UCS of about 40 and 70%, respectively. The addition of fibers also increased the ductility of the mixture material and was more effective for the improvement of tensile strength compared to that of metakaolin. The contribution of metakaolin to early-age strength (i.e., 3 and 7 days) of CSB mixture was found to be small due to the relatively low cement content in the mixture.  相似文献   

8.
Cement-stabilized clay is widely used in soft clay improvement for deep excavation, underground construction, and land reclamation. This paper presents a study on the evaluation of elastic modulus for cement-stabilized marine clay. First, two types of cement-stabilized soils were studied through isotropic compression tests and cylinder split tensile tests. Specimens with different mix ratios and curing periods were used. Stress–strain behavior under isotropic compression was discussed, followed by an introduction and estimation of the stress-free bulk modulus. Empirical correlations between elastic moduli and functions for estimating elastic moduli were then proposed. Further estimation of elastic modulus was conducted with another data set. The results showed that the proposed function for estimating elastic modulus is effective for cement-improved marine clay. Finally, the proposed method and empirical functions were validated with other types of cement-stabilized clay.  相似文献   

9.
This study investigates the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene (EPS), dredged clays, and cement through both unconfined and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analyzed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing pressure. In the triaxial compression test, it is found that the compressive strength of LWS associated with EPS is independent on the effective confining pressure. When both EPS ratio is less than 2% and cement ratio is more than 2%, the compressive strength rapidly decreases after the ultimate value. This signifies that the compressive strength-strain behavior is quite similar to that of the cemented soil. The ground improved by LWS has the compressive strength of 200 kPa associated with the optimized EPS ratio of 3-4% and initial water content of 165-175%. The ultimate compressive strength under both triaxial and unconfined compression tests is almost constant for a cement ratio of up to 2%.  相似文献   

10.
This study investigates the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene (EPS), dredged clays, and cement through both unconfined and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analyzed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing pressure. In the triaxial compression test, it is found that the compressive strength of LWS associated with EPS is independent on the effective confining pressure. When both EPS ratio is less than 2% and cement ratio is more than 2%, the compressive strength rapidly decreases after the ultimate value. This signifies that the compressive strength-strain behavior is quite similar to that of the cemented soil. The ground improved by LWS has the compressive strength of 200 kPa associated with the optimized EPS ratio of 3–4% and initial water content of 165–175%. The ultimate compressive strength under both triaxial and unconfined compression tests is almost constant for a cement ratio of up to 2%.  相似文献   

11.
实施了水泥固化粉土和高岭土的室内渗透试验,在分析水泥土灰水比和龄期对渗透性影响的基础上,提出了不含拟合参数的水泥土长期渗透系数预测式。试验结果表明,与原土种类无关,同一龄期水泥土的渗透系数随灰水比的增大线性减小;粉土水泥土的渗透系数大于相同灰水比、相同龄期高岭土水泥土的渗透系数;水泥土渗透系数随灰水比的降低速率与原土的种类及龄期有关,粉土水泥土渗透系数随灰水比的降低速率大于相同龄期高岭土水泥土的渗透系数降低速率;与原土种类无关,水泥土的渗透系数随龄期的增大逐渐降低,在龄期超过28 d后,渗透系数随龄期的降低速率减小。预测式预测的结果基本反映了水泥土渗透系数随龄期的变化规律。  相似文献   

12.
On Physical and Mechanical Behavior of Natural Marine Intermediate Deposits   总被引:4,自引:1,他引:4  
Coastal structures may be built on natural sedimentary intermediate grounds, which mainly consist of silty soils and fine sandy soils. In this study, extensive field and laboratory tests were performed on the nattwal marine intermediate deposits to demonstrate the difference in behavior between natural marine clayey soils and natural marine intermediate deposits. The natural intermediate deposits have almost the same miles of natural water content to liquid limit as those of the soft natural marine clays, but the former have much higher in-situ strength and sensitivity than the latter. The research results indicate that grain size distributions of soils affect significantly tip resistance obtained in field cone penetration tests. The mechanical parameters of natural marine intermediate deposits are also significantly affected by sample disturbance due to their high sensitivity and relatively large permeability. Unconfined compression shear tests largely underestimate the strength of natural marine intermediate soils. The triaxial consohdated compression shear tests with simulated insitu confined pressure give results much better than those of uncomfined compression shear tests.  相似文献   

13.
Abstract

Short waste fibers are used to suppress the expansion and improve the tensile strength of cement-stabilized marine clay (CMC). The fiber-reinforced mechanism and characteristics are revealed by experimental and numerical methods. First, the curing effect of the CMC when adding a composite curing agent is observed by scanning electronic microscopy, as is the contact surface between the fiber and the matrix. Then, the expansion rate and the tensile strength of fiber-reinforced cement-stabilized marine clay (FCMC) are illustrated by an expansion experiment and a direct tensile experiment, respectively. The results show that the sample with the cement content of 0.1% and the fiber length of 10?mm is the best in terms of strength enhancement and expansion inhibition. Finally, the mechanism of fiber reinforcement is discussed following a single fiber pullout experiment and some comprehensive explanations are proposed to verify the results of the tensile experiment. A numerical simulation of a single fiber pullout from a matrix is established by using a cohesive contact model. The comparison between the numerical results and the experimental results shows that the two models can be in good agreement, indicating that the calculation model of the interaction between the fiber and the matrix is realistic.  相似文献   

14.
The purpose of this article is to investigate a possible use of lime for the stabilization of base soils underlying salt evaporation ponds in Çamalt? Solar Marine Salt Plant. The plant is located on the old Gediz River Delta, on the north shore of the Izmir Bay-Turkey, where alluvial deltaic soft marine sediments constitute the local soil condition. The low bearing capacity of the pond base soils results in some problems on the mechanical harvest of the solar salt. Therefore, stabilization was taken into consideration for improving the productivity of the salt plant. For this purpose, bench-scale laboratory tests were performed on the specimens that had been sampled from the bases of the salt evaporation pond to investigate the influence of lime on the unconfined compressive strength (UCS) of these marine sediments. By interpreting the pH test results and consistency limits of the lime stabilized soils, optimum lime content was determined as 8%. The verification of the long-term pozzolanic reactions for the optimum lime content was conducted by performing UCS tests with up to six months curing periods, along with the microstructural analysis through X-ray diffraction analysis (XRD) and a scanning electron microscope (SEM). Long-term tests revealed that the optimum lime content successfully sustained the required pozzolanic reactions, and a strength gain of 500% was achieved for a six-month curing period.  相似文献   

15.
Through the flexural behavior test of coral aggregate reinforced concrete beams (CARCB) and ordinary Portland reinforced concrete beams (OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment (Mcr) and ultimate bending moment (Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width (w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed.  相似文献   

16.
Natural Ariake clays are characterized by high sensitivity. In this study, the mechanism and the factors controlling undrained shear strengths of both undisturbed and remolded Ariake clays are discussed. A series of unconfined compressive tests were performed on undisturbed samples of natural Ariake clays. The remolded undrained shear strength is predicted using a quantitative expression derived from extensive data of remolded undrained shear strength for a number of soils compiled from resources in the literature. The sensitivity of natural Ariake clays derived from the ratio of half of unconfined compressive strength for undisturbed samples to remolded undrained shear strength is found to be affected by both natural water content and normalized water content that is defined as the ratio of natural water content to liquid limit. The smaller the natural water content, the higher the sensitivity is at the same normalized water content. At the same natural water content, the larger the normalized water content, the higher the sensitivity is.  相似文献   

17.
ABSTRACT

Natural Ariake clays are characterized by high sensitivity. In this study, the mechanism and the factors controlling undrained shear strengths of both undisturbed and remolded Ariake clays are discussed. A series of unconfined compressive tests were performed on undisturbed samples of natural Ariake clays. The remolded undrained shear strength is predicted using a quantitative expression derived from extensive data of remolded undrained shear strength for a number of soils compiled from resources in the literature. The sensitivity of natural Ariake clays derived from the ratio of half of unconfined compressive strength for undisturbed samples to remolded undrained shear strength is found to be affected by both natural water content and normalized water content that is defined as the ratio of natural water content to liquid limit. The smaller the natural water content, the higher the sensitivity is at the same normalized water content. At the same natural water content, the larger the normalized water content, the higher the sensitivity is.  相似文献   

18.
Undrained shear strength is a fundamental parameter for estimating the stability of soft soils. This study explores the relationship between undrained shear strength, void ratio, and shear wave velocity for saturated and normally consolidated clay specimens. The undrained shear strength void ratio-shear wave velocity relationship was correlated to empirically determined parameters of selected marine clay specimens. To verify the proposed relationship between undrained shear strength and shear wave velocity, in situ flat dilatometer tests were used for determining the undrained shear strength, and downhole tests were used to assess the shear wave velocity on a natural soil deposit at various depths. The undrained shear strength estimated from the in situ shear wave velocities was compared to the undrained shear strength obtained in the field. The results show that the inferred undrained shear strength yield similar values and follow the same trends as the in situ undrained shear strength data. This method using shear wave velocity can help to nondestructively estimate the undrained shear strength of soft soils in the field and be used in both on-shore and off-shore geotechnical engineering projects.  相似文献   

19.
The present paper describes the results of a rather long series of full–scale, flexural–strength tests on ice beams (over 70 tests) performed in–situ in seawater and freshwater ice at and near Svalbard archipelago during the period 2010–2018. Ice thickness varied in the range of 0.2–0.8 m. Based on a comprehensive analysis of the test data, characteristic plots of ice flexural strength and effective elastic modulus versus the liquid–brine–volume fraction, which varied over a large range of 0–0.2 and were obtained specifically for the geographic region under consideration. The observed range in flexural strength for seawater ice was 0.109–0.415 MPa, and the same for freshwater ice was 0.275–0.807 MPa. The test results with cantilever beams did not show a dependence of the ice flexural strength on the direction of bending force applied to the free end of a beam. Experiments complemented with numerical analysis have demonstrated that stress concentrations in root sections of cantilever ice beams have significant impact on the accuracy of measurement of flexural strength of freshwater ice. It is noted that modifications have to be introduced in the methodology that is used to measure the effective elastic modulus of ice based on the free–end deflection of cantilever ice beams.  相似文献   

20.
In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号