首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article discusses the Meso–Cenozoic thermal history, thermal lithospheric thinning, and thermal structure of the lithosphere of the Bohai Bay Basin, North China. The present-day thermal regime of the basin features an average heat flow of 64.5 ± 8.1 mW m–2, a lithospheric thickness of 76–102 km, and a ‘hot mantle but cold crust’-type lithospheric thermal structure. The Meso–Cenozoic thermal history experienced two heat flow peaks in the late Early Cretaceous and in the middle to late Palaeogene, with heat flow values of 82–86 mW m?2 and 81–88 mW m?2, respectively. Corresponding to these peaks, the thermal lithosphere experienced two thinning stages during the Cretaceous and Palaeogene, reaching a minimum thickness of 43–61 km. The lithospheric thermal structure transformed from the ‘hot crust but cold mantle’ type in the Triassic–Jurassic to the ‘cold crust but hot mantle’ type in the Cretaceous–Cenozoic, according to the ratio of mantle to surface heat flow (qm/qs). The research on the thermal history and lithospheric thermal structure of sedimentary basins can effectively reveal the thermal regime at depth in the sedimentary basins and provide significance for the study of the basin dynamics during the Meso–Cenozoic.  相似文献   

2.
Increased seismicity and occurrences of hot springs having surface temperature of 36–58 °C are observed in the central part of India (74–81° E, 20–25° N), where the NE trending Middle Proterozoic Aravalli Mobile Belt meets the ENE trending Satpura Mobile Belt. Earlier Deep Seismic Sounding (DSS) studies along Thuadara-Sendhwa-Sindad profile in the area has showed Mesozoic Sediments up to around 4 km depth covered by Deccan Trap and the Moho depth with a boundary velocity (Pn) of 8.2 km/s. In the present study, surface heat flow of 48 ± 4 mW m?2 has been estimated based on Pn velocity, which agrees with the value of heat flow of 52 ± 4 mW m?2 based on Curie point isotherms estimates. The calculated temperature-depth profile shows temperature of 80–120 °C at the basement, which is equivalent to oil window temperature in Mesozoic sediments and around 570–635 °C at Moho depth of 38–43 km and the thermal lithosphere is about 110 km thick, which is comparatively higher than those of adjoining regions. The present study reveals the brittle–ductile transition zone at 14–41 km depth (temperature around 250–600 °C) where earthquake nucleation takes place.  相似文献   

3.
The numerical results of thermal modeling studies indicate that the lithosphere is cold and strong beneath the Black Sea basin.The thermal lithospheric thickness increases southward from the eastern Pontides orogenic belt(49.4 km) to Black Sea basin(152.2 km).The Moho temperature increases from 367℃in the trench to 978℃in the arc region.The heat flow values for the Moho surface change between 16.4 mW m-2 in the Black Sea basin and 56.9 mW m-2 in the eastern Pontides orogenic belt. Along the southern Black Sea coast,the trench region has a relatively low geothermal potential with respect to the arc and back-arc region.The numerical studies support the existence of southward subduction beneath the Pontides during the late Mesozoic-Cenozoic.  相似文献   

4.
High‐T, low‐P metamorphic rocks of the Palaeoproterozoic central Halls Creek Orogen in northern Australia are characterised by low radiogenic heat production, high upper crustal thermal gradients (locally exceeding 40 °C km?1) sustained for over 30 Myr, and a large number of layered mafic‐ultramafic intrusions with mantle‐related geochemical signatures. In order to account for this combination of geological and thermal characteristics, we model the middle crustal response to a transient mantle‐related heat pulse resulting from a temporary reduction in the thickness of the mantle lithosphere. This mechanism has the potential to raise mid‐crustal temperatures by 150–400 °C within 10–20 Myr following initiation of the mantle temperature anomaly, via conductive dissipation through the crust. The magnitude and timing of maximum temperatures attained depend strongly on the proximity, duration and lateral extent of the thermal anomaly in the mantle lithosphere, and decrease sharply in response to anomalies that are seated deeper than 50–60 km, maintained for <5 Myr in duration and/or have half‐widths <100 km. Maximum temperatures are also intimately linked to the thermal properties of the model crust, primarily due to their influence on the steady‐state (background) thermal gradient. The amplitudes of temperature increases in the crust are principally a function of depth, and are broadly independent of crustal thermal parameters. Mid‐crustal felsic and mafic plutonism is a predictable consequence of perturbed thermal regimes in the mantle and the lowermost crust, and the advection of voluminous magmas has the potential to raise temperatures in the middle crust very quickly. Although pluton‐related thermal signatures significantly dissipate within <10 Myr (even for very large, high‐temperature intrusive bodies), the interaction of pluton‐ and mantle‐related thermal effects has the potential to maintain host rock temperatures in excess of 400–450 °C for up to 30 Myr in some parts of the mid‐crust. The numerical models presented here support the notion that transient mantle‐related heat sources have the capacity to contribute significantly to the thermal budget of metamorphism in high‐T, low‐P metamorphic belts, especially in those characterised by low surface heat flow, very high peak metamorphic geothermal gradients and abundant mafic intrusions.  相似文献   

5.
Tauranga low-temperature geothermal system (New Zealand) has been used for the last 40 years for direct uses including space heating, bathing and greenhouses. Warm-water springs in the area are between 22 and 39 °C, with well temperatures up to 67 °C at 750 m depth. A heat and fluid flow model of the system is used to determine reservoir properties and assess thermal potential. The model covers 130 km by 70 km to 2 km depth, and was calibrated against temperatures measured in 17 wells. Modelling shows that to maintain the observed primarily conductive heat flow regime, bulk permeability is ≤2.5?×?10?14 m2 in sedimentary cover and ≤1?×?10?16 m2 in the underlying volcanic rocks. The preferred model (R 2?=?0.9) corresponds to thermal conductivities of 1.25 and 1.8 W/m2 for sedimentary and volcanic rocks, respectively, and maximum heat flux of 350 mW/m2. The total surface heat flow is 258 MW over 2,200 km2. Heat flux is highest under Tauranga City, which may be related to inferred geology. Model simulations give insights into rock properties and the dynamics of heat flow in this low-temperature geothermal system, and provide a basis to estimate the effects of extracting hot fluid.  相似文献   

6.
The Gulf of Suez is characterized by the presence of many hot springs and deep thermal wells scattered around its coastal areas. So it is considered one of the promised geothermal areas in Egypt. In this study, the main emphasis is to investigate the geothermal potential around the Gulf of Suez using the available logging and geothermometer datasets. The temperature profiles and well logging data of some hot springs and deep wells around or within the coastal area of the Gulf of Suez are used in this study. The temperature profiles are analyzed and some important thermophysical properties are estimated (geothermal gradient, thermal conductivity, heat flow, and specific heat capacity). Such analysis revealed that a medium to high geothermal gradient (22.0–30°C/Km) is given for the Gulf of Suez as a whole, with some spots of much higher gradient in the order of 35.0–44°C/Km (Ras Fanar and Hammam Faraun areas). The compiled thermal plots show that the thick evaporites and rock salt lithology, which is a major constituent in this area, attain the highest thermal conductivity (>3.10 W/m/K) and heat flow (>90 mW/m2) and the lowest specific heat capacity (<0.30 J/kg/K). The available gamma ray and the natural gamma ray spectroscopy logs are used to conduct a radioactive-based heat generation study using the characteristic radioactive nature of some elements like; 238U, 235U, 232Th, and of the isotope of 40K. A good linearity is observed between the heat production (A in microwatt per cubic meter) and the gamma ray (API) along a wide range of datasets (0–150 API) in all wells. The heat production factor increases in the carbonate lithology (up to 3.20?μW/m3) and is proportional to the shale volume. A geothermometer-based study is used to estimate the subsurface formation temperature and heat flow from the geochemical analysis of some water samples collected from the studied hot springs. The estimated thermal parameters are in harmony with the regional thermal regime concluded form logging data. A thermal basin growth study, in relation to the clay diagenesis is conducted concerning the thermal effects that take place with depth giving rise to another clay mineral (illite). Furthermore, a number of 2D thermal–burial history diagrams are constructed for the complied sections of some of the studied areas to show the vertical distribution of the estimated petrothermal properties. A reserve evaluation study is carried out to estimate the economic geothermal capacity of these hot springs to be used as alternative clean source for possible energy production (electricity) and other low-temperature purposes.  相似文献   

7.
The Tongue Creek watershed lies on the south flank of Grand Mesa in western Colorado, USA and is a site with 1.5 km of topographic relief, heat flow of 100 mW/m2, thermal conductivity of 3.3 W m–1 °C–1, hydraulic conductivity of 10-8 m/s, a water table that closely follows surface topography, and groundwater temperatures 3–15°C above mean surface temperatures. These data suggest that convective heat transport by groundwater flow has modified the thermal regime of the site. Steady state three-dimensional numerical simulations of heat flow, groundwater flow, and convective transport were used to model these thermal and hydrological data. The simulations provided estimates for the scale of hydraulic conductivity and bedrock base flow discharge within the watershed. The numerical models show that (1) complex three-dimensional flow systems develop with a range of scales from tens of meters to tens of kilometers; (2) mapped springs are frequently found at locations where contours of hydraulic head indicate strong vertical flow at the water table, and; (3) the distribution of groundwater temperatures in water wells as a function of surface elevation is predicted by the model.  相似文献   

8.
Geothermal water is plentiful in Changbai Mountain region, northeastern China, due to the volcanic activities and widespread faults. For the exploration of geothermal resources, this study uses quartz and cation geothermometer to estimate the temperatures of the geothermal reservoir and uses the tubular models to evaluate the thermal gradient. The hydrogeochemical characteristics of the geothermal resources were also evaluated by hydrogeochemical analysis. The results showed that the geothermal reservoir temperatures of the four major thermal springs in Changbai Mountain region range from 72 to 169 °C. The average geothermal reservoir temperatures of Jinjiang hot springs, Changbai hot springs I, Xianrenqiao hot springs, and Changbai hot springs II are 129.25, 169, 89, and 73.67 °C, respectively. The geothermal gradient values of the four major thermal springs have different characteristics. The geothermal gradient values of Jinjiang hot springs and Changbai hot springs I are 4.6 and 3.1 °C/100 m, respectively. The geothermal gradient values of Xianrenqiao thermal springs and Changbai thermal springs II are both lower than 1.5 °C/100 m, with the values of 1.1 and 1.4 °C/100 m. And the geothermal gradients are influenced by Changbai Mountain Tianchi volcano. In addition, the water chemical analyses showed that the geothermal water types are HCO3-Na with higher concentrations of Na+, Cl?, SO4 2?, TDS, and HCO3 ? than the non-thermal waters, which suggested a deep and long water cycle of the thermal water, and therefore a sufficient water-rock interaction.  相似文献   

9.
Thermal waters of northern (18°–27°S) and southern (37°–45°S) Chile occur in two very different climatic, geologic and hydrologic environments: arid closed basins with abundant evaporites in the north; humid climate and well drained valleys in the south. The origin and behavior of the main components of the two groups of waters are examined and compared to each other. The modeling of the alteration of volcanic rocks leads to water compositions very different from those observed both in the north and south. In addition to hydrothermal alteration and deep emanations, the Cl/Br ratio reveals a major contribution of saline waters to the two groups: infiltrating brines from salt lakes in the north; seawater in the south.In the north, concentrations of Cl, Br, Na, K, Ca, SO4, Li, B, Si result from the mixing of alteration waters with recycled brines. Hydrothermal alteration is obscured by this massive saline input, except for Mg. δ34S values are consistent with an origin of sulfate from salar brines, which are themselves derived from deep Tertiary gypsum. In the south, two processes account for the composition of thermal waters: mixing of alteration waters with seawater and deep magmatic contribution. The mixing process controls the concentration of Cl, Br, Na, Alk, Si, K, Ca, Mg. Magmatic inputs are detectable for SO4, Li and B. δ34S suggests that sulfate stems from the mixing of alteration waters with either marine SO4 in coastal waters or with deep SO2 in inland waters. In both the north and south, the Mg concentration is drastically lowered (<1 μmol/L) by the probable formation of a chlorite-type mineral. In the south, very small amounts of seawater (<1% in volume) are sufficient to imprint a clear signature on thermal waters. Not only coastal springs are affected by seawater mixing, but also remote inland springs, as far as 150 km from the sea. Subduction of marine sediments in the accretive margin could be the source of the marine imprint in thermal waters of southern Chile. Seawater may be expelled from the subducted lithosphere and incorporated into the mantle source.  相似文献   

10.
High‐grade gneisses (amphibolite–granulite facies) of the Namche Barwa and Gyala Peri massifs, in the eastern Himalayan syntaxis, have been unroofed from metamorphic depths in the late Tertiary–Recent. Rapid exhumation (2–5 mm year?1) has resulted in a pronounced shallow conductive thermal anomaly beneath the massifs and the intervening Tsangpo gorge. The position of the 300 °C isotherm has been estimated from fluid inclusions using CO2–H2O immiscibility phase equilibria to be between 2.5 and 6.2 km depth below surface. Hence, the near‐surface average thermal gradient exceeds 50 °C km?1 beneath valleys, although the thermal gradient is relatively lower beneath the high mountains. The original metamorphic fluid in the gneisses was >90% CO2. This fluid was displaced by incursion of brines from overlying marine sedimentary rocks that have since been largely removed by erosion. Brines can exceed 60 wt% dissolved salts, and include Ca, Na, K and Fe chlorides. These brines were remobilized during the earliest stages of uplift at >500 °C. During exhumation, incursion of abundant topography‐driven surface waters resulted in widespread fracture‐controlled hydrothermal activity and brine dilution down to the brittle–ductile transition. Boiling water was particularly common at shallow levels (<2.5 km) beneath the Yarlung Tsangpo valley, and numerous hot springs occur at the surface in this valley. Dry steam is not a major feature of the hydrothermal system in the eastern syntaxis (in contrast to the western syntaxis at Nanga Parbat), but some dry steam fluids may have developed locally.  相似文献   

11.
Coupled thermal‐mechanical models are used to investigate interactions between metamorphism, deformation and exhumation in large convergent orogens, and the implications of coupling and feedback between these processes for observed structural and metamorphic styles. The models involve subduction of suborogenic mantle lithosphere, large amounts of convergence (≥ 450 km) at 1 cm yr?1, and a slope‐dependent erosion rate. The model crust is layered with respect to thermal and rheological properties — the upper crust (0–20 km) follows a wet quartzite flow law, with heat production of 2.0 μW m?3, and the lower crust (20–35 km) follows a modified dry diabase flow law, with heat production of 0.75 μW m?3. After 45 Myr, the model orogens develop crustal thicknesses of the order of 60 km, with lower crustal temperatures in excess of 700 °C. In some models, an additional increment of weakening is introduced so that the effective viscosity decreases to 1019 Pa.s at 700 °C in the upper crust and 900 °C in the lower crust. In these models, a narrow zone of outward channel flow develops at the base of the weak upper crustal layer where T≥600 °C. The channel flow zone is characterised by a reversal in velocity direction on the pro‐side of the system, and is driven by a depth‐dependent pressure gradient that is facilitated by the development of a temperature‐dependent low viscosity horizon in the mid‐crust. Different exhumation styles produce contrasting effects on models with channel flow zones. Post‐convergent crustal extension leads to thinning in the orogenic core and a corresponding zone of shortening and thrust‐related exhumation on the flanks. Velocities in the pro‐side channel flow zone are enhanced but the channel itself is not exhumed. In contrast, exhumation resulting from erosion that is focused on the pro‐side flank of the plateau leads to ‘ductile extrusion’ of the channel flow zone. The exhumed channel displays apparent normal‐sense offset at its upper boundary, reverse‐sense offset at its lower boundary, and an ‘inverted’ metamorphic sequence across the zone. The different styles of exhumation produce contrasting peak grade profiles across the model surfaces. However, P–T–t paths in both cases are loops where Pmax precedes Tmax, typical of regional metamorphism; individual paths are not diagnostic of either the thickening or the exhumation mechanism. Possible natural examples of the channel flow zones produced in these models include the Main Central Thrust zone of the Himalayas and the Muskoka domain of the western Grenville orogen.  相似文献   

12.
13.
Spectral analysis method was applied to aeromagnetic data obtained for Ikogosi warm spring (IWS) area of southwestern Nigeria. This was done with the objective of determining the bottom of the magnetized crust called Curie point depth (CDP) and understand the nature and extent of the local geothermal system at depth beneath IWS. The depth to the centroid, Z o, of the deepest distribution of the magnetic dipoles was obtained by computing least-squares fit to the lowest-frequency segment of the azimuthally averaged log power spectrum. The average depth to the top of the deepest crustal block was computed as the depth to the top, Z t, of the second lowest-frequency segment of the spectrum. The depth to the bottom of the deepest magnetic dipoles, the inferred Curie point depth, was then calculated from Z b?=?2Z o???Z t. The Curie depth estimates for IWS range between 4.68 and 11.38 km (below sea level). We also estimate the heat flow and Curie temperature using a one-dimensional conductive heat transport model. The average heat flow, 42 mW m?2, and geothermal gradient, 32°C/km, obtained suggest a low enthalpy thermal regime. The Curie temperature for the region varies between 153°C and 350°C. Also, an inverse linear relationship between heat flow and Curie depths was determined. Good agreement between the Curie point depths derived from heat flow data and magnetic data suggests that the Curie point depth analysis is useful to estimate the regional thermal structure and the tectonic settings.  相似文献   

14.
Thermal structure of the lithosphere studies the partition of crustal and mantle heat flow of the continental area and is of significant importance to understand various energy‐related geodynamic processes. The study addresses the spatial distribution of the Meso‐Cenozoic mantle heat flow and Moho temperatures in the region of the Bohai Bay Basin based on the thermal history of the sedimentary basin, radioactive heat production rate and thickness of crustal layering. The results show that the ratio of the mantle and surface heat flow (qm/qs) experienced two peaks in the late period of the Early Cretaceous (qm/qs ~ 68%) and the Middle to Late Palaeogene (qm/qs ~ 75%), respectively. Based on the qm/qs ratio, the lithosphere of the Bohai Bay Basin transformed its thermal structure during the Meso‐Cenozoic, from the ‘cold mantle but hot crust’ stage in the Triassic–Jurassic to the ‘hot mantle but cold crust’ stage in the Cretaceous and Cenozoic. The Moho temperatures (Tm) during the Meso‐Cenozoic were also calculated by using the equation of one‐dimensional heat conduction, and the result shows that there exist three Tm peaks occurring in the late period of the Early Cretaceous (930–1080 °C), the Middle‐Late Palaeogene (820–890 °C) and the Early Neogene (770–810 °C). The qm/qs ratio began to exceed 50%, and the Moho temperature started to go over 700 °C from the Cretaceous to the present day, which revealed that the activity of the upper mantle in the eastern North China Craton (NCC) increased significantly accompanied by the strong crustal movement in the Cretaceous. The thermal structure revealed the Cretaceous to be a revolutionary period during the evolution of the Bohai Bay Basin, and this paper may provide some thermal evidence for the studies of the geodynamic evolution during the destruction of the NCC. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Heat flow and lithospheric thermal regime in the Northeast German Basin   总被引:3,自引:0,他引:3  
New values of surface heat flow are reported for 13 deep borehole locations in the Northeast German Basin (NEGB) ranging from 68 to 91 mW m− 2 with a mean of 77 ± 3 mW m− 2. The values are derived from continuous temperature logs, measured thermal conductivity, and log-derived radiogenic heat production. The heat-flow values are supposed free of effects from surface palaeoclimatic temperature variations, from regional as well as local fluid flow and from thermal refraction in the vicinity of salt structures and thus represent unperturbed crustal heat flow. Two-D numerical lithospheric thermal models are developed for a 500 km section along the DEKORP-BASIN 9601 deep seismic line across the basin with a north-eastward extension across the Tornquist Zone. A detailed conceptual model of crustal structure and composition, thermal conductivity, and heat production distribution is developed. Different boundary conditions for the thickness of thermal lithosphere were used to fit surface heat flow. The best fit is achieved with a thickness of thermal lithosphere of about 75 km beneath the NEGB. This estimate is corroborated by seismological studies and somewhat less than typical for stabilized Phanerozoic lithosphere. Modelled Moho temperatures in the basin are about 800 °C; heat flow from the mantle is about 35 to 40 mW m− 2. In the southernmost part of the section, beneath the Harz Mountains, higher Moho temperatures up to 900 to 1000 °C are shown. While the relatively high level of surface heat flow in the NEGB obviously is of longer wave length and related to lithosphere thickness, changes in crustal structure and composition are responsible for short-wave-length anomalies.  相似文献   

16.
The Kozakli–Nev?ehir geothermal field extends a long a NW–SE direction at SE of the Centrum of Kozakli. The area is not rugged and average elevation is 1,000 m. The Kozanözü Creek flows towards north of the area. In the Kozakli thermal Spa area, thermal waters are manifested along a valley with a length of 1.5 km and 200 m width. In this resort some hot waters are discharged with no use. The thermal water used in the area comes from wells drilled by MTA. In addition, these waters from wells are also utilized by hotels, baths and motels belonging to City Private Management, Municipality and private sector. The measured temperature of Kozakli waters ranges from 43–51°C in springs and 80–96°C in wells. Waters are issued in a wide swampy area as a small group of springs through buried faults. Electrical conductivity values of thermal spring and well waters are 1,650–3,595 μS/cm and pH values are 6.72–7.36. Kozakli cold water has an electrical conductivity value of 450 μS/cm and pH of 7.56. All thermal waters are dominated by Na+ and Cl–SO4 while cold waters are dominated by Ca+2 and HCO3 ?. The aim of this study was to investigate the environmental problems around the Kozakli geothermal field and explain the mechanisms of karstic depression which was formed by uncontrolled use of thermal waters in this area and bring up its possible environmental threats. At the Kozakli geothermal field a sinkhole with 30 m diameter and 15 m depth occurred in January, 17th 2007 at the recreation area located 20 m west of the geothermal well which belongs to the government of Nev?ehir province. The management of the geothermal wells should be controlled by a single official institution in order to avoid the creation of such karstic structures affecting the environment at the source area.  相似文献   

17.
This study focuses on the water and gas chemistry of the northeastern Algerian thermal waters. The helium gas was used to detect the origin of the geothermal fluid. In the Guelma Basin, the heat flow map shows an anomaly of 120 ± 20 mW/m2 linked to the highly conductive Triassic extrusion. The chemical database reveals the existence of three water types, Ca-SO4/Na-Cl, which are related to evaporites and rich in halite and gypsum minerals. The third type is Ca (Na)-HCO3, which mostly characterizes the carbonated Tellian sector. The origin of thermal waters using a gas-mixing model indicates a meteoric origin, except for the El Biban hot spring (W10), which shows a He/Ar ratio of 0.213, thus suggesting the presence of batholith. The helium distribution map indicates a lower 3He/4He ratio between 0 Ra and 0.04 Ra in the W10 and W15 samples, which is compatible with the crustal ratio. Reservoir temperatures estimated by silica geothermometers give temperatures less than 133 °C. The geothermal conceptual model suggests that a geothermal system was developed by the deep penetration of infiltrated cold waters to a depth of 2.5 km and then heated by a conductive heat source (batholith for El Biban case). The thermal waters rise up to the surface through the deep-seated fractures. During their ascension, they are mixed with shallow cold groundwater, which increase the Mg content and cause the immature classification of the water samples.  相似文献   

18.
Several thousand clinopyroxene, garnet, and phlogopite inclusions of mantle rocks from Jurassic and Triassic kimberlites in the northeastern Siberian craton have been analyzed and compared with their counterparts from Paleozoic kimberlites, including those rich in diamond. The new and published mineral chemistry data make a basis for an updated classification of kimberlite-hosted clinopyroxenes according to peridotitic and mafic (eclogite and pyroxenite) parageneses. The obtained results place constraints on the stability field of high-Na lherzolitic clinopyroxenes, which affect the coexisting garnet and decrease its Ca contents. As follows from analyses of the mantle minerals from Mesozoic kimberlites, the cratonic lithosphere contained more pyroxenite and eclogite in the Mesozoic than in the Paleozoic. It virtually lacked ultradepleted harzburgite-dunite lithologies and contained scarce eclogitic diamonds. On the other hand, both inclusions in diamond and individual eclogitic minerals from Mesozoic kimberlites differ from eclogitic inclusions in diamond from Triassic sediments in the northeastern Siberian craton. Xenocrystic phlogopites from the D’yanga pipe have 40Ar/39Ar ages of 384.6, 432.4, and 563.4 Ma, which record several stages of metasomatic impact on the lithosphere. These phlogopites are younger than most of Paleozoic phlogopites from the central part of the craton (Udachnaya kimberlite). Therefore, hydrous mantle metasomatism acted much later on the craton periphery than in the center. Monomineral clinopyroxene thermobarometry shows that Jurassic kimberlites from the northeastern craton part trapped lithospheric material from different maximum depths (170 km in the D’yanga pipe and mostly < 130 km in other pipes). The inferred thermal thickness of cratonic lithosphere decreased progressively from ~ 260 km in the Devonian-Carboniferous to ~ 225 km in the Triassic and to ~ 200 km in the Jurassic, while the heat flux (Hasterok-Chapman model) was 34.9, 36.7, and 39.0 mW/m2, respectively. Dissimilar PT patterns of samples from closely spaced coeval kimberlites suggest different emplacement scenarios, which influenced both the PT variations across the lithosphere and the diamond potential of kimberlites.  相似文献   

19.
The Hamamboğazi spa in western Turkey was built around natural hot springs with discharge temperatures in the range of 30–54°C; the waters have near neutral pH values of 6.50–7.10 and a TDS content between 2,694 and 2,982 mg/l. Thermal water with a temperature of 47.5–73°C has been produced at 325 l/s from five wells since 1994, causing some springs to go dry. A management plan is required in the study area to maximize the benefits of this resource, for which currently proposed direct uses include heating in the district and greenhouses, as well as balneology in new spas in the area. The best use for the water from each spring or well will depend on its temperature, chemistry and location. The thermal waters are mixed Na–Mg–HCO3–SO4 fluids that contain a significant amount of CO2 gas. The chemical geothermometers applied to the Hamamboğazi thermal waters yield a maximum reservoir temperature of 130°C. Isotope results (18O, 2H, 3H) indicate that the thermal waters have a meteoric origin: rainwater percolates downward along fractures and faults, is heated at depth, and then rises to the surface along fractures and faults that act as a hydrothermal conduit. The basement around the Banaz Hamamboğazi resort is comprised of Paleozoic metamorphic schist and marbles exposed 8 km south and 15 km north of Banaz. Mesozoic marble, limestone and ophiolitic complex are observed a few km west and in the northern part of Banaz. These units were cut at a depth of 350–480 m in boreholes drilled in the area. Overlying lacustrine deposits are composed of fine clastic units that alternate with gypsum, tuff and tuffites of 200–350 m thickness. The marble and limestones form the thermal water aquifer, while lacustrine deposits form the impermeable cap.  相似文献   

20.
A moderate pressure / high temperature zonal metamorphic complex in the Tongulack Mountain Ridge, Altai, Russia, is described, and the applicability of the models of magmatic intrusion and fluid flow to explanation of its origin discussed. The Precambrian complex was formed at 500-700℃ and 3.0-5.5 kbars; it is a linear, 25-30 km wide, thermal anticline with a curved axis showing symmetric metamorphic zoning. The metamorphism was isochemical by its nature, as is corroborated by the chemical compositions of the rocks. Four zones can be recognized within the metamorphic complex: chloritic (on the peripheries), cordieritic, sillimanitic and staurolite-out (in the centre). The zones are separated by successive isograds: cordierite, staurolite-in or sillimanite and staurolite-out. It is argued that the origin of the metamorphic zoning can be explained best by a combined fluid-magmatic model; conductive heat flow from the intrusion predominated considerably over the fluid flux in heat transfer: the fluid flow  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号