首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Late Cretaceous (ca. 100 Ma) diamondiferous Fort à la Corne (FALC) kimberlite field in the Saskatchewan (Sask) craton, Canada, is one of the largest known kimberlite fields on Earth comprising essentially pyroclastic kimberlites. Despite its discovery more than two decades ago, petrological, geochemical and petrogenetic aspects of the kimberlites in this field are largely unknown. We present here the first detailed petrological and geochemical data combined with reconnaissance Nd isotope data on drill-hole samples of five major kimberlite bodies. Petrography of the studied samples reveals that they are loosely packed, clast-supported and variably sorted, and characterised by the presence of juvenile lapilli, crystals of olivine, xenocrystal garnet (peridotitic as well as eclogitic paragenesis) and Mg-ilmenite. Interclast material is made of serpentine, phlogopite, spinel, carbonate, perovskite and rutile. The mineral compositions, whole-rock geochemistry and Nd isotopic composition (Nd: + 0.62 to − 0.37) are indistinguishable from those known from archetypal hypabyssal kimberlites. Appreciably lower bulk-rock CaO (mostly < 5 wt%) and higher La/Sm ratios (12–15; resembling those of orangeites) are a characteristic feature of these rocks. Their geochemical composition excludes any effects of significant crustal and mantle contamination/assimilation. The fractionation trends displayed suggest a primary kimberlite melt composition indistinguishable from global estimates of primary kimberlite melt, and highlight the dominance of a kimberlite magma component in the pyroclastic variants. The lack of Nb-Ta-Ti anomalies precludes any significant role of subduction-related melts/fluids in the metasomatism of the FALC kimberlite mantle source region. Their incompatible trace elements (e.g., Nb/U) have OIB-type affinities whereas the Nd isotope composition indicates a near-chondritic to slightly depleted Nd isotope composition. The Neoproterozoic (~ 0.6–0.7 Ga) depleted mantle (TDM) Nd model ages coincide with the emplacement age (ca. 673 Ma) of the Amon kimberlite sills (Baffin Island, Rae craton, Canada) and have been related to upwelling protokimberlite melts during the break-up of the Rodinia supercontinent and its separation from Laurentia (North American cratonic shield). REE inversion modelling for the FALC kimberlites as well as for the Jericho (ca. 173 Ma) and Snap Lake (ca. 537 Ma) kimberlites from the neighbouring Slave craton, Canada, indicate all of their source regions to have been extensively depleted (~ 24%) before being subjected to metasomatic enrichment (1.3–2.2%) and subsequent small-degree partial melting. These findings are similar to those previously obtained on Mesozoic kimberlites (Kaapvaal craton, southern Africa) and Mesoproterozoic kimberlites (Dharwar craton, southern India). The striking similarity in the genesis of kimberlites emplaced over broad geological time and across different supercontinents of Laurentia, Gondwanaland and Rodinia, highlights the dominant petrogenetic role of the sub-continental lithosphere. The emplacement of the FALC kimberlites can be explained both by the extensive subduction system in western North America that was established at ca. 150 Ma as well as by far-field effects of the opening of the North Atlantic ocean during the Late Cretaceous.  相似文献   

2.
Modeling of the seismic, thermal, and density structure of the Siberian craton lithospheric mantle at depths of 100-300 km has been performed along the superlong Meteorite and Rift seismic profiles. The 2D velocity sections reflect the specific features of the internal structure of the craton: lateral inhomogeneities, seismic-boundary relief at depths of ~ 100, 150, 240, and 300 km, velocities of 8.3-8.7 km/s, and the lack of low-velocity zone in the lower lithosphere. Mapping of the thermal state along the Meteorite and Rift profiles shows a significant temperature decrease in the cratonic mantle as compared with the average temperatures of the surrounding Phanerozoic mantle (> 300 °C) estimated from the global reference model AK135. Lateral temperature variations, reflecting the thermal anomalies in the cratonic keel, are observed at depths of < 200 km (with some decrease in temperature in the central part of the craton), whereas at depths of > 200 km, temperature variations are negligible. This suggests the preservation of residual thermal perturbations at the base of the lithosphere, which must lead to the temperature equalization in the transition zone between the lithosphere and the asthenosphere. Variations in chemical composition have a negligible effect on the thermal state but affect strongly the density structure of the mantle. The results of modeling admit a significant fertilization of matter at depths more than 180-200 km and stratification of the cratonic mantle by chemical composition. The thicknesses of chemical (petrologic) and thermal boundary layers beneath the Siberian craton are estimated. The petrologic lithosphere is localized at depths of ~ 200 km. The bottom of the thermal boundary layer is close to the 1450 °C isotherm and is localized at a depth of 300 km, which agrees with heat flow and seismic-tomography data.  相似文献   

3.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

4.
Integrated models of diamond formation and craton evolution   总被引:4,自引:0,他引:4  
Two decades of diamond research in southern Africa allow the age, average N content and carbon composition of diamonds, and the dominant paragenesis of their syngenetic silicate and sulfide inclusions to be integrated on a cratonwide scale with a model of craton formation. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the mid-Proterozoic and display little correspondence with the prominent variations in the P-wave velocity (±1%) that the mantle lithosphere shows at depths within the diamond stability field (150–225 km). Silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane show a regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity relative to the craton average correlates with a greater proportion of eclogitic vs. peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds. The oldest formation ages of diamonds support a model whereby mantle that became part of the continental keel of cratonic nuclei first was created by middle Archean (3.2–3.3 Ga or older) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of eclogitic sulfide inclusions in the 2.9 Ga age population links late Archean (2.9 Ga) subduction–accretion events to craton stabilization. These events resulted in a widely distributed, late Archean generation of eclogitic diamonds in an amalgamated craton. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite. Similar age/paragenesis systematics are seen for the more limited data sets from the Slave and Siberian cratons.  相似文献   

5.
《Gondwana Research》2013,24(4):1455-1483
The crust and upper mantle in mainland China were relatively densely probed with wide-angle seismic profiling since 1958, and the data have provided constraints on the amalgamation and lithosphere deformation of the continent. Based on the collection and digitization of crustal P-wave velocity models along related wide-angle seismic profiles, we construct several crustal transects across major tectonic units in mainland China. In our study, we analyzed the seismic activity, and seismic energy releases during 1970 and 2010 along them. We present seismogenic layer distribution and calculate the yield stress envelopes of the lithosphere along the transects, yielding a better understanding of the lithosphere rheology strength beneath mainland China. Our results demonstrate that the crustal thicknesses of different tectonic provinces are distinctively different in mainland China. The average crustal thickness is greater than 65 km beneath the Tibetan Plateau, about 35 km beneath South China, and about 36–38 km beneath North China and Northeastern China. For the basins, the thickness is ~ 55 km beneath Qaidam, ~ 50 km beneath Tarim, ~ 40 km beneath Sichuan and ~ 35 km beneath Songliao. Our study also shows that the average seismic P-wave velocity is usually slower than the global average, equivalent with a more felsic composition of crust beneath the four tectonic blocks of mainland China resulting from the complex process of lithospheric evolution during Triassic and Cenozoic continent–continent and Mesozoic ocean–continent collisions. We identify characteristically different patterns of seismic activity distribution in different tectonic blocks, with bi-, or even tri-peak distribution of seismic concentration in South Tibet, which may suggest that crustal architecture and composition exert important control role in lithosphere deformation. The calculated yield stress envelopes of lithosphere in mainland China can be divided into three groups. The results indicate that the lithosphere rheology structure can be described by jelly sandwich model in eastern China, and crème brulee models with weak and strong lower crust corresponding to lithosphere beneath the western China and Kunlun orogenic belts, respectively. The spatial distribution of lithospheric rheology structure may provide important constraints on understanding of intra- or inter-plate deformation mechanism, and more studies are needed to further understand the tectonic process(es) accompanying different lithosphere rheology structures.  相似文献   

6.
The Archean lithospheric mantle beneath the Kaapvaal–Zimbabwe craton of Southern Africa shows ±1% variations in seismic P-wave velocity at depths within the diamond stability field (150–250 km) that correlate regionally with differences in the composition of diamonds and their syngenetic inclusions. Seismically slower mantle trends from the mantle below Swaziland to that below southeastern Botswana, roughly following the surface outcrop pattern of the Bushveld-Molopo Farms Complex. Seismically slower mantle also is evident under the southwestern side of the Zimbabwe craton below crust metamorphosed around 2 Ga. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa, and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the Proterozoic and show little correspondence with these lithospheric variations. However, silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane do show some regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity correlates with a greater proportion of eclogitic versus peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds whereas the converse is true for diamonds from higher velocity mantle. The oldest formation ages of diamonds indicate that the mantle keels which became continental nuclei were created by middle Archean (3.2–3.3 Ga) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of sulfide inclusions that are eclogitic in the 2.9 Ga age population links late Archean (2.9 Ga) subduction-accretion events involving an oceanic lithosphere component to craton stabilization. These events resulted in a widely distributed younger Archean generation of eclogitic diamonds in the lithospheric mantle. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite.  相似文献   

7.
Here, we compare nitrogen aggregation characteristics and carbon isotopic compositions in diamonds from Mesoproterozoic (T1) and Jurassic (U2) kimberlites in the Attawapiskat area—the first diamond-producing area on the Superior craton. The T1 kimberlite sampled diamonds from the lithospheric mantle at 1.1 Ga, at the same time as the major Midcontinent Rift event. These diamonds have a narrow range in δ13C (mode of ?3.4 ‰), with compositions that overlap other diamond localities on the Superior craton. Some diamond destruction must have occurred during the Mesoproterozoic in response to the thermal impact of the Midcontinent Rift—the associated elevated geotherm caused a narrow diamond window (<30 km) close to the base of the lithosphere, compared to a wide diamond window of ~85 km following thermal relaxation (sampled by Jurassic kimberlites, such as U2). T1 diamonds have highly aggregated nitrogen, possibly due to the thermal effect of the rift. Diamond-favourable conditions were re-established in the lithospheric mantle after the thermal impact of the Midcontinent Rift dissipated. The poorly aggregated nature of nitrogen in U2 diamonds—compared to highly aggregated nitrogen in diamonds from T1—indicates that renewed diamond formation must have occurred only after the thermal impact of the Midcontinent Rift at 1.1 Ga had subsided and that these newly formed diamonds were subsequently sampled by Jurassic kimberlites. The overall δ13C distribution for U2 diamonds is distinct to T1 and other Superior diamonds, further suggesting that U2 diamonds are not related to the older pre-rift diamonds.  相似文献   

8.
The lithospheric structure of ancient cratons provides important constraints on models relating to tectonic evolution and mantle dynamics. Here we present the 3D lithospheric structure of the North China Craton (NCC) from a joint inversion of gravity, geoid and topography data. The NCC records a prolonged history of Archean and Paleoproterozoic accretion of crustal blocks through subduction and collision building the cratonic architecture, which was subsequently differentially destroyed during Mesozoic through extensive magmatism. The thermal structure obtained in our study is considered to define the lithosphere-asthenosphere boundary (LAB) of the NCC, and reflects the density variations within the mantle lithosphere. Employing the Moho depths from deep seismic sounding profiles for the inversion, and based on repeated computations using different parameters, we estimate the Moho depth, LAB depth and average crustal density of the craton. The Moho depth varies from 28 to 50 km and the LAB depth varies from 105 to 205 km. The LAB and Moho show concordant thinning from West to East of the NCC. The average crustal density is 2870 kg m 3 in the western part of the NCC, higher than that in the eastern part (2750 kg m 3). The results of joint inversion in our study yielded LAB depth and lithospheric thinning features similar to those estimated from thermal and seismic studies, although our results show different depth and variations in the thickness. The lithosphere gently thins from 145 to 105 km in the eastern NCC, where as the thinning is much less pronounced in the western NCC with average depth of about 175 km. The joint inversion results in this study provide another perspective on the lithospheric structure from the density properties and corresponding geophysical responses in an ancient craton.  相似文献   

9.
The U–Pb (SHRIMP) age was determined for zircons collected from 26 observation and sampling sites of diamonds and index minerals in the northeastern Siberian Platform. This part of the region hosts 15 low-diamondiferous Paleozoic and Mesozoic kimberlite fields, excluding the near economic Triassic Malokuonapskaya pipe in the Kuranakh field. Four epochs of kimberlite formation (Silurian, Late Devonian to Early Carboniferous, Middle to Late Triassic, and Middle to Late Jurassic) of the Siberian Platform, including its northeastern part, are confirmed as a result of our studies. Most observation points, including economic Quaternary diamond placers, contain Middle to Late Triassic zircons, which confirms the abundant Late Triassic volcanism in this region. The positive correlation of diamonds and major index minerals of kimberlites (mostly, garnets) at some observation sites indicates the possible Triassic age of the predictable diamondiferous kimberlites.  相似文献   

10.
A comprehensive synthesis of U–Pb geochronology and Hf isotopes of zircons from granulite/pyroxenite xenoliths entrained in Phanerozoic magmatic rocks and inherited xenocrysts from the associated lower crust rocks from various domains of the North China Craton (NCC) provides new insights into understanding the Phanerozoic evolution of the lower crust in this craton. Episodic widespread magma underplating into the ancient lower crust during Phanerozoic has been identified throughout the NCC from early Paleozoic to Cenozoic, broadly corresponding to the Caledonian, Hercynian, Indosinian, Yanshanian, and Himalayan orogenies on the circum-craton mobile belts. The early Paleozoic (410–490 Ma) ages come from xenoliths in the northern and southern margins as well as the central domain of the Eastern Block of the craton which mark the first phase of Phanerozoic magma underplating since the final cratonization of the NCC in the Paleoproterozoic. The magmatism coincided with the northward subduction of the Paleotethysian Ocean in the south and the southward subduction of the Paleoasian Ocean in the north. The subduction not only triggered magma underplating but also led to the emplacement of the diamondiferous kimberlites on the craton, marking the initiation of decratonization. The late Paleozoic event as represented by the 315 Ma garnet pyroxenite and/or lherzolite xenoliths in Hannuoba was restricted to the northern and southern margins of the craton, correlating with the arc magmatism continuous associated with the subduction of the Paleotethysian and Paleoasian Oceans and resulting in the interaction between the melts from subducted slabs and the lithospheric mantle/lower crust. The early Mesozoic event also dominantly occurred in the northern and southern margins and was related with the final closure of the Paleotethysian and Paleoasian Oceans as well as the collisional orogeny between the NCC and the Yangtze Craton. The late Mesozoic (ca. 120 Ma) was a major and widespread magmatic event which manifested throughout the NCC, associated with the geothermal overturn due to the giant south Pacific mantle plume. The Cenozoic magmatism, identified only in the dark clinopyroxenite xenoliths in the Hannuoba, was probably induced by the Himalayan movement in eastern Asia and might also have been influenced by the subduction of the Pacific Ocean to some extent. These widespread and episodic magma underplating or rejuvenation of the ancient lower crust beneath the NCC revealed by U–Pb and Hf isotope data resulted from the corresponding addition of juvenile materials from mantle to lower crust, with a mixing of the old crust with melts. The process inevitably resulted in the compositional modification of the ancient lower crust, similar to the compositional transformation from the refractory lithospheric mantle to a fertile one through the refractory peridotite — infiltrated melt reaction as revealed in the lithospheric mantle beneath the craton.  相似文献   

11.
Comprehensive studies of zircon xenocrysts from kimberlites of the Kuoika field (northeastern Siberian craton) and several kimberlite fields of the eastern Anabar shield, along with data compilation on the age of kimberlite-hosting terranes, reveal details of the evolution of the northern Siberian craton. The age distribution and trace element characteristic of zircons from the Kuoika field kimberlites (Birekte terrane) provide evidence of significant basic and alkaline–carbonatite magmatism in northern Siberia in the Paleozoic and Mesozoic periods. The abundance of 1.8–2.1 Ga zircons in both the Birekte and adjacent Hapchan terranes (the latter hosting kimberlites of the eastern Anabar shield) supports the Paleoproterozoic assembly and stabilization of these units in the Siberian craton and the supercontinent Columbia. The abundance of Archean zircons in the Hapchan terrane reflects the input of an ancient source other than the Birekte terrane and addresses the evolution of the terrane to west (Magan and Daldyn terranes of the Anabar shield). The present study has also revealed the oldest known remnant of the Anabar shield crust, whose 3.62 Ga age is similar to that of another ancient domain of Siberia, the Aldan shield. The first Hf isotope data for the Anabar shield coupled with the U–Pb systematics indicate three stages of crustal growth (Paleoproterozoic, Neoarchean and Paleoarchean) and two stages of the intensive crustal recycling in the Paleoproterozoic and Neoarchean. Intensive reworking of the existing crust at 2.5–2.8 Ga and 1.8–2.1 Ga is interpreted to provide evidence for the assembly of Columbia. The oldest Hf model age estimation provides a link to Early Eoarchean (3.7–3.95 Ga) and possibly to Hadean crust. Hence, some of the Archean cratonic segments of the Siberian craton could be remnants of the Earth's earliest continental crust.  相似文献   

12.
We present a new regional model for the depth-averaged density structure of the cratonic lithospheric mantle in southern Africa constrained on a 30′ × 30′ grid and discuss it in relation to regional seismic models for the crust and upper mantle, geochemical data on kimberlite-hosted mantle xenoliths, and data on kimberlite ages and distribution. Our calculations of mantle density are based on free-board constraints, account for mantle contribution to surface topography of ca. 0.5–1.0 km, and have uncertainty ranging from ca. 0.01 g/cm3 for the Archean terrains to ca. 0.03 g/cm3 for the adjacent fold belts. We demonstrate that in southern Africa, the lithospheric mantle has a general trend in mantle density increase from Archean to younger lithospheric terranes. Density of the Kaapvaal mantle is typically cratonic, with a subtle difference between the eastern, more depleted, (3.31–3.33 g/cm3) and the western (3.32–3.34 g/cm3) blocks. The Witwatersrand basin and the Bushveld Intrusion Complex appear as distinct blocks with an increased mantle density (3.34–3.35 g/cm3) with values typical of Proterozoic rather than Archean mantle. We attribute a significantly increased mantle density in these tectonic units and beneath the Archean Limpopo belt (3.34–3.37 g/cm3) to melt-metasomatism with an addition of a basaltic component. The Proterozoic Kheis, Okwa, and Namaqua–Natal belts and the Western Cape Fold Belt with the late Proterozoic basement have an overall fertile mantle (ca. 3.37 g/cm3) with local (100–300 km across) low-density (down to 3.34 g/cm3) and high-density (up to 3.41 g/cm3) anomalies. High (3.40–3.42 g/cm3) mantle densities beneath the Eastern Cape Fold belt require the presence of a significant amount of eclogite in the mantle, such as associated with subducted oceanic slabs.We find a strong correlation between the calculated density of the lithospheric mantle, the crustal structure, the spatial pattern of kimberlites, and their emplacement ages. (1) Blocks with the lowest values of mantle density (ca. 3.30 g/cm3) are not sampled by kimberlites and may represent the “pristine” Archean mantle. (2) Young (< 90 Ma) Group I kimberlites sample mantle with higher density (3.35 ± 0.03 g/cm3) than the older Group II kimberlites (3.33 ± 0.01 g/cm3), but the results may be biased by incomplete information on kimberlite ages. (3) Diamondiferous kimberlites are characteristic of regions with a low-density cratonic mantle (3.32–3.35 g/cm3), while non-diamondiferous kimberlites sample mantle with a broad range of density values. (4) Kimberlite-rich regions have a strong seismic velocity contrast at the Moho, thin crust (35–40 km) and low-density (3.32–3.33 g/cm3) mantle, while kimberlite-poor regions have a transitional Moho, thick crust (40–50 km), and denser mantle (3.34–3.36 g/cm3). We explain this pattern by a lithosphere-scale (presumably, pre-kimberlite) magmatic event in kimberlite-poor regions, which affected the Moho sharpness and the crustal thickness through magmatic underplating and modified the composition and rheology of the lithospheric mantle to make it unfavorable for consequent kimberlite eruptions. (5) Density anomalies in the lithospheric mantle show inverse correlation with seismic Vp, Vs velocities at 100–150 km depth. However, this correlation is weaker than reported in experimental studies and indicates that density-velocity relationship in the cratonic mantle is strongly non-unique.  相似文献   

13.
On the northeastern slope of the Kuznetsk Alatau, small differentiated alkaline basic intrusive massifs form an isometric area ~ 100 km across. They are composed of subalkalic and alkali gabbroids, basic and ultrabasic foidolites, nepheline and alkali syenites, and carbonatites. Results of complex (U–Pb, Sm–Nd, and Rb–Sr) isotope dating suggest that alkaline basic magmatism developed at two stages, in the Middle Cambrian–Early Ordovician (~ 510–480 Ma) and in the Early–Middle Devonian (~ 410–385 Ma). Finding of accessory zircons (age 1.3–2.0 Ga) in alkaline rocks suggests that the ascent of mantle plume was accompanied by the melting of fragments of Proterozoic mature continental crust composing the basement of the Caledonian orogen of the Kuznetsk Alatau. Probably, parental Cambrian–Ordovician alkaline mafic melts initiated metasomatism and lithosphere erosion. During the next melting of lithosphere substrate in ~ 100 Myr, this caused the generation of magmas of similar composition with inherited isotope parameters (εNd(T)  + 4.8 to + 5.7, TNd(DM)  0.8–0.9 Ga) pointing to the similar nature of their matter sources in the moderately depleted mantle.  相似文献   

14.
The ∼500,000 km2 Saharan Metacraton in northern Africa (metacraton refers to a craton that has been mobilized during an orogenic event but that is still recognisable through its rheological, geochronological and isotopic characteristics) is an Archean–Paleoproterozoic cratonic lithosphere that has been destabilized during the Neoproterozoic. It extends from the Arabian–Nubian Shield in the east to the Trans-Saharan Belt in the west, and from the Oubanguides Orogenic Belt in the south to the Phanerozoic cover of North Africa. Here, we show that there are high S-wave velocity anomalies in the upper 100 km of the mantle beneath the metacraton typical of cratonic lithosphere, but that the S-wave velocity anomalies in the 175–250 km depth are much lower than those typical of other cratons. Cratons have possitive S-wave velocity anomalies throughout the uppermost 250 km reflecting the presence of well-developed cratonic root. The anomalous upper mantle structure of the Saharan Metacraton might be due to partial loss of its cratonic root. Possible causes of such modification include mantle delamination or convective removal of the cratonic root during the Neoproterozoic due to collision-related deformation. Partial loss of the cratonic root resulted in regional destabilization, most notably in the form of emplacement of high-K calc-alkaline granitoids. We hope that this work will stimulate future multi-national research to better understand this part of the African Precambrian. Specifically, we call for efforts to conduct systematic geochronological, geochemical, and isotopic sampling, deploy a reasonably-dense seismic broadband seismic network, and conduct systematic mantle xenoliths studies.  相似文献   

15.
We report groundmass perovskite U–Pb (SIMS) ages, perovskite Nd isotopic (LA-ICPMS) composition and bulk-rock geochemical data of the Timmasamudram diamondiferous kimberlite cluster, Wajrakarur kimberlite field, in the Eastern Dharwar craton of southern India. The kimberlite pipes gave similar Mesoproterozoic ages of 1086 ± 19 Ma (TK-1, microcrystic variant) and 1119 ± 12 Ma (TK-3). However, a perovskite population sampled from the macrocrystic variant of TK-1 gave a much younger Late Cretaceous age of ca. 90 Ma. This macrocrystic kimberlite phase intrudes the Mesoproterozoic microcrystic phase and has a distinct bulk-rock geochemistry. The Nd-isotope composition of the ~ 1100 Ma perovskites in the cluster show depleted εNd(T) values of 2.1 ± 0.6 to 6.7 ± 0.3 whereas the ~ 90 Ma perovskites have enriched εNd(T) values of − 6.3 ± 1.3. The depleted-mantle (DM) model age of the Cretaceous perovskites is 1.2 Ga, whereas the DM model age of the Proterozoic perovskites is 1.2 to 1.5 Ga. Bulk-rock incompatible trace element ratios (La/Sm, Gd/Lu, La/Nb and Th/Nb) of all Timmasamudram kimberlites show strong affinity with those from the Cretaceous Group II kimberlites from the Bastar craton (India) and Kaapvaal craton (southern Africa). As the Late Cretaceous age of the younger perovskites from the TK-1 kimberlite is indistinguishable from that of the Marion hotspot-linked extrusive and intrusive igneous rocks from Madagascar and India, we infer that all may be part of a single Madagascar Large Igneous Province. Our finding constitutes the first report of Cretaceous kimberlite activity from southern India and has significant implications for its sub-continental lithospheric mantle evolution and diamond exploration programs.  相似文献   

16.
A central target in Earth sciences is to understand the processes controlling the stabilization and destruction of Archean continents. The North China craton (NCC) has in part lost its dense crustal root after the Mesozoic, and thus it is a key region to test models of crust–mantle differentiation and subsequent evolution of the continental crust. However, the timing and mechanisms responsible for its crustal thickening and reworking have been long debated. Here we report the Early Cretaceous Yinan (eastern NCC) adakitic granites, for which major/trace elemental models demonstrate that they are complementary to the analogy of the documented eclogitic relicts within the NCC. Based on their Late Archean inherited zircons, depleted mantle Nd model ages of ∼2.8 Ga, large negative εNd(t) values (−36.7 to −25.3) and strongly radiogenic initial 87Sr/86Sr ratios (0.7178–0.7264), we suggest that the Yinan adakitic granites were potentially formed by the dehydration melting of a thickened Archean mica-bearing mafic lower crust during the Early Cretaceous (ca. 124 Ma), corresponding to a major period (117–132 Ma) of the NCC Mesozoic intrusive magmatism. Combined previous results, it is shown that the thickening and reworking of the North China Archean lower crust occurred largely as two short-lived episodes at 155–180 Ma and 117–132 Ma, rather than a gradual, secular event. These correlated temporally with the superfast-spreading Pacific plate during the Mesozoic. The synchroneity of these events suggests rapid plate motion of the Pacific plate driving the episodic NCC crustal thickening and reworking, resulting in dense eclogitic residues that became gravitationally unstable. The onset of lithospheric delamination occurred when upwelling asthenosphere heated the base of lower crust to form coeval felsic magmas with or without involvement of juvenile mantle material. Collectively, the circum-Pacific massive crustal production could be attributed to the unusually rapid motion of Pacific at 155–180 Ma and 117–132 Ma.  相似文献   

17.
This paper reports U–Pb–Hf isotopes of detrital zircons from Late Triassic–Jurassic sediments in the Ordos, Ningwu, and Jiyuan basins in the western-central North China Craton (NCC), with the aim of constraining the paleogeographic evolution of the NCC during the Late Triassic–Jurassic. The early Late Triassic samples have three groups of detrital zircons (238–363 Ma, 1.5–2.1 Ga, and 2.2–2.6 Ga), while the latest Late Triassic and Jurassic samples contain four groups of detrital zircons (154–397 Ma, 414–511 Ma, 1.6–2.0 Ga, and 2.2–2.6 Ga). The Precambrian zircons in the Late Triassic–Jurassic samples were sourced from the basement rocks and pre-Late Triassic sediments in the NCC. But the initial source for the 238–363 Ma zircons in the early Late Triassic samples is the Yinshan–Yanshan Orogenic Belt (YYOB), consistent with their negative zircon εHf(t) values (−24 to −2). For the latest Late Triassic and Jurassic samples, the initial source for the 414–511 Ma zircons with εHf(t) values of −18 to +9 is the Northern Qinling Orogen (NQO), and that for the 154–397 Ma zircons with εHf(t) values of −25 to +12 is the YYOB and the southeastern Central Asian Orogenic Belt (CAOB). In combination with previous data of late Paleozoic–Early Triassic sediments in the western-central NCC and Permian–Jurassic sediments in the eastern NCC, this study reveals two shifts in detrital source from the late Paleozoic to Jurassic. In the Late Permian–Early Triassic, the western-central NCC received detritus from the YYOB, southeastern CAOB and NQO. However, in the early Late Triassic, detritus from the CAOB and NQO were sparse in basins located in the western-central NCC, especially in the Yan’an area of the Ordos Basin. We interpret such a shift of detrital source as result of the uplift of the eastern NCC in the Late Triassic. In the latest Late Triassic–Jurassic, the southeastern CAOB and the NQO restarted to be source regions for basins in the western-central NCC, as well as for basins in the eastern NCC. The second shift in detrital source suggests elevation of the orogens surrounding the NCC and subsidence of the eastern NCC in the Jurassic, arguing against the presence of a paleo-plateau in the eastern NCC at that time. It would be subsidence rather than elevation of the eastern NCC in the Jurassic, due to roll-back of the subducted paleo-Pacific plate and consequent upwelling of asthenospheric mantle.  相似文献   

18.
Calcite fossils from New Zealand and New Caledonia provide insight into the Permian to Jurassic climatic history of Southern High Latitudes (southern HL) and Triassic Southern Intermediate Latitudes (southern IL). These results permit comparison with widely studied, coeval sections in Low Latitudes (LL) and IL. Oxygen isotope ratios of well-preserved shell materials indicate a partially pronounced Sea Surface Temperature (SST) gradient in the Permian, whereas for the Triassic no indication of cold climates in the southern HL is found. The Late Jurassic of New Zealand is characterized by a slight warming in the Oxfordian–Kimmeridgian and a subsequent cooling trend in the Tithonian. Systematic variations in the δ13C values of southern HL samples are in concert with those from LL sections and confirm the global nature of the carbon isotope signature and changes in the long-term carbon cycle reported earlier.Systematic changes of Sr/Ca ratios in Late Triassic brachiopods, falling from 1.19 mmol/mol in the Oretian (early Norian) to 0.67 mmol/mol in the Warepan (late Norian) and subsequently increasing to 1.10 mmol/mol in the Otapirian (~ Rhaetian), are observed. Also Sr/Ca ratios of Late Jurassic belemnite genera Belemnopsis and Hibolithes show synchronous changes in composition that may be attributed to secular variations in the seawater Sr/Ca ratio. For the two belemnite genera an increase from 1.17 mmol/mol in the Middle Heterian (~ Oxfordian) to 1.78 mmol/mol in the Mangaoran (~ late Middle Tithonian) and a subsequent decrease to 1.51 mmol/mol in the Waikatoan (~ Late Tithonian) is documented.  相似文献   

19.
S. Angiboust  P. Agard 《Lithos》2010,120(3-4):453-474
We herein investigate the extent to which extensive hydration of the oceanic lithosphere influences the preservation and exhumation of large-scale ophiolite bodies from subduction zones. The Zermatt–Saas ophiolite (ZS, W. Alps), which was subducted during the late stages of oceanic subduction, preserves a complete section of Mesozoic Tethys oceanic lithosphere and particularly fresh eclogites, and represents, so far, the largest and deepest known portion of exhumed oceanic lithosphere. Pervasive hydrothermal processes and seafloor alteration led to the incorporation of large amounts of fluid bound in the hydrated upper layers of the oceanic crust (now as lawsonite eclogites, glaucophanites, and chloritoschists) and in associated ultramafic rocks.Internally, the ZS ophiolite is made up of a series of tectonic slices of oceanic crust (150–300 m thick) which are systematically separated by a 5 to 100 m thick layer of serpentinite. This stack of slices is separated from the underlying eclogitized continental crust (e.g., Monte Rosa) by a thick (~ 500 m) serpentinite sole. Field observations, textural relationships and pseudosection modelling reveal that lawsonite was abundant and widespread in mafic eclogites when the ophiolite detached from the slab at around 550 °C and 24 kbar.Comparison between fresh eclogitic samples and pseudosection modelling shows that (i) water remained in excess from burial to eclogitic peak conditions, (ii) the lightest eclogitized metabasalts correspond to the portions of oceanic crust where metasomatism was the strongest, (iii) crystallization of widespread hydrated parageneses (such as lawsonite, glaucophane and phengite) instead of garnet and omphacite decreased by 5 to 10% the rock density and subsequently enhanced its buoyancy.We propose that this density decrease acted as a ‘float’ which prevented the slices from an irreversible sinking in the mantle. These slices were subsequently detached from the downgoing slab and stacked in the serpentinized subduction channel at pressures between 15 and 20 kbar, in the epidote blueschist facies. Exhumation of the underlying, positively buoyant continental crust dragged this “frozen” nappe-stack from the subduction channel towards the surface.  相似文献   

20.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号