首页 | 本学科首页   官方微博 | 高级检索  
     


Polarized X-ray absorption spectra and electronic structure of molybdenite (2H-MoS2)
Authors:Dien Li  G. M. Bancroft  M. Kasrai  M. E. Fleet  X. H. Feng  K. H. Tan
Affiliation:1. Department of Chemistry, University of Western Ontario, N6A 5B7, London, Ontario, Canada
2. Department of Earth Sciences, University of Western Ontario, N6A 5B7, London, Ontario, Canada
3. Canadian Synchrotron Radiation Facility, Synchrotron Radiation Center, University of Wisconsin, 53589, Stoughton, Wisconsin, USA
Abstract:Polarized S K- and L-edge, Mo L3- and L2-edge x-ray absorption near-edge structure (XANES) of natural molybdenite (2H-MoS2) have been measured with synchrotron radiation. These results are qualitatively interpreted using the energy band model of molybdenite and provide important information on the unoccupied states of molybdenite. The valence band (VB) maximum of molybdenite is characterized by fully occupied Mo 4dz2, and the conduction band (CB) minimum of molybdenite is characterized by unoccupied Mo 4d states. The unoccupied Mo 4d band is split into two sub-bands, designated as t2g/t2g+and eg/eg+sets. Although the relative energy of these two sets are difficult to be evaluated, probably the former has the lower energy than the latter, both two sets have the combination wave functions of the other unoccupied Mo 4d components, rather than the simple 4dx2 — y2 and 4dxy states. The unoccupied Mo 4d sub-bands contain significant DOS of both S 3 p- and 3 s-like states, indicating strong hybridization with S 3s and 3 p states. In the lower energy sub-band, the DOS of the S pz- and px,y-like states are very similar. However, in the higher energy sub-band, the DOS of the S 3 px,y-like state is lower than that of the S 3pz state. Polarized S K-edge XANES also reveal the features of antibonding S pz- and px,y-like states in molybdenite. The feature assigned to the S 3 pz-like states is stronger and sharper, and shifts to lower energy by about 2 eV relative to that for the S 3 px,y-like states.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号