首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metamorphic reactions between fluid inclusions and mineral hosts. I. Progress of the reaction calcite+quartz=wollastonite+CO2 in natural wollastonite-hosted fluid inclusions
Authors:W Heinrich  Matthias Gottschalk
Institution:(1) GeoForschungsZentrum Potsdam (GFZ), Telegrafenberg A17, Department of Experimental Petrology/Geochemistry, D-14473 Potsdam, Germany, DE
Abstract: At the Bufa del Diente contact-metamorphic aureole, brine infiltration through metachert layers embedded in limestones produced thick wollastonite rims, according to Cc+Qz=Wo+CO2. Fluid inclusions trapped in recrystallized quartz hosts include: (1) high salinity four phase inclusions Th(V-L)=460–573° C; Td(salts)=350–400° C; (Na+K)Cleq=64–73 wt%; X CO 2≤0.02]; (2) low density vapour-rich CO2-bearing inclusions Th(L-V)≈500±100° C; X CO 2=0.22–0.44; X NaCl≤0.01], corresponding to densities of 0.27± 0.05 gcm−3. Petrographical observations, phase compositions and densities show that the two fluids were simultaneously trapped in the solvus of the H2O-CO2-salts system at 500–600° C and 700±200 bars. The low density fluid was generated during brine infiltration at the solvus via the wollastonite producing reaction. Identical fluid types were also trapped as inclusion populations in wollastonite hosts 3 cm adjacent to quartz crystals. At room temperature, both fluid types additionally contain one quartz and one calcite crystal, generated by the back-reaction Wo+CO2=Cc+Qz of the host with the CO2-proportion of the fluid during retrogression. All of the CO2 was removed from the fluid. On heating in the microstage, the reaction progress of the prograde reaction was estimated via volume loss of the calcites. In vapour-rich fluids, 50% progress is reached at 490–530° C; 80% at 520–560° C; and 100% at 540–590° C, the latter representing the trapping temperatures of the original fluid at the two fluid solvus. The progress is volume controlled. With knowledge of compositions and densities from unmodified inclusions in quartz and using the equation of state of Duan et al. (1995) for H2O-CO2-NaCl, along with f CO 2-values extracted from it, the reaction progress curve was recalculated in the P-T-X-space. The calculated progress curve passes through the two fluid solvus up to 380° C/210 bars, continues in the one fluid field and meets the solvus again at trapping conditions. The P-T slope is steep, most of the reaction occurs above 450° C and there is high correspondence between calculated and measured reaction progress. We emphasize that with the exception of quartz, back-reactions between inclusion fluids and mineral hosts is a common process. For almost any prograde metamorphic mineral that was formed by a devolatilization reaction and that trapped the equilibrium fluid or any peak metamorphic fluid as an inclusion, a fluid-host back-reaction exists which must occur somewhere along the retrograde path. Such retrograde reactions may cause drastic changes in density and composition of the fluid. In most cases, however, evidence of the evolving mineral assemblages is not given for they might form submicroscopical layers at the inclusion walls. Received: 15 March 1995 / Accepted: 1 June 1995
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号