首页 | 本学科首页   官方微博 | 高级检索  
     


Magnetic studies on Kilauea Iki lava lake,Hawaii
Authors:Robert W. Decker
Affiliation:1. Department of Geology, Dartmouth College, Hanover, New Hampshire, USA
Abstract:Ground surveys made during August, 1961, show large vertical magnetic intensity anomalies associated with the partly lava filled crater of Kilauea Iki. A vertical magnetic variation of 11,600 gammas occurs along a north-south profile across the crater, the maximum being on the north rim of the crater and the minimum on the south edge of the encrusted lava lake below the south rim. An east-west profile shows less vertical magnetic variation, with lake-surface measurements 1500 to 2500 gammas lower than measurements on the east rim of the crater. Computed anomalies using two-dimensional potential field graticules are in good agreement with the observed anomalies and support the following conclusions: 1) Average measured values of remanent magnetization of 10?2 cgs units and susceptibilities of 10?3 cgs units give reasonable magnitudes to the computed anomalies. 2) The remanent magnetization is parallel to the earth’s present magnetic field. 3) The maximum vertical magnetic field value in the north-south profile is the result of reinforcement of the positive terrain effect of the north rim of the crater and the positive edge effect of the north side of the lava lake. 4) The minimum value in the same profile is the result of reinforcement of the negative terrain effect at the base of the south rim of the crater and the negative edge effect of the south side of the lava lake. 5) Variation in the east-west magnetic profile is less because the terrain and edge effects of the horizontal components of the earth’s magnetic field and remanent magnetization approach zero. Changes in vertical magnetic field values as the lake solidifies will be maximum at the north edge of the lava lake, but more consistent changes of the opposite sign will occur on the south side of the lava lake. Total change will be approximately + 2300 gammas between the August 1961 measurement at station S6 and the value at that point when the entire lava lake has cooled below 400° C. The maximum rate of change at station S6 will occur when the 500° C isotherm is 35 to 65 meters below the surface and will be about 28 gammas per meter of lowering of the 500°C surface. Because of the steep magnetic anomalies associated with the lava lake and crater rims, the permanent magnetization presently forming in the cooling lake crust will have inclinations as much as 12° less than the average 37.5° inclination in the Kilauea area.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号