首页 | 本学科首页   官方微博 | 高级检索  
     


Nuclear magnetic resonance study of the formation and dissociation process of nature gas hydrate in sandstone
Abstract:In this work, the authors monitored the formation and dissociation process of methane hydrate in four different rock core samples through nuclear magnetic resonance (NMR) relaxation time (T2) and 2D imaging measurement. The result shows that the intensity of T2 spectra and magnetic resonance imaging (MRI) signals gradually decreases in the hydrate formation process, and at the same time, the T2 spectra move toward the left domain as the growth of hydrate in the pores of the sample accelerates the decay rate. The hydrate grows and dissociates preferentially in the purer sandstone samples with larger pore size and higher porosity. Significantly, for the sample with lower porosity and higher argillaceous content, the intensity of the T2 spectra also shows a trend of a great decrease in the hydrate formation process, which means that high-saturation gas hydrate can also be formed in the sample with higher argillaceous content. The changes in MRI of the sample in the process show that the formation and dissociation of methane hydrate can reshape the distribution of water in the pores.©2022 China Geology Editorial Office.
Keywords:Nature gas hydrates (NGHs)  Methane hydrate  Nuclear magnetic resonance (NMR)  Magnetic resonance imaging (MRI)  Formation and dissociation  Saturation  Berea sandstone  Marine hydrates production test  Oil and gas exploration engineering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号