首页 | 本学科首页   官方微博 | 高级检索  
     


The non-independence of rainfall erosivity and soil erodibility
Authors:Christopher Morgan
Abstract:Three high erosivity conditions (50 mm hr?1, 100 mm hr?1, and 200 mm hr?1) were generated in a laboratory using a rainfall simulator and coherent soil block samples from fourteen different soil erodibility conditions. The data acquired supports the theoretical contention that soil loss should not increase as a simple linear function of storm intensity. Rather, a variable relationship is caused by the rupturing of surface seals and the changing relative significance of splash, wash and rainwash processes. Slope angle appears to influence soil loss at the higher erosivity conditions of 100 mm hr?1 and 200 mm hr?1 on slopes that were either very steep (> 20°) or very shallow (< 3°), but on moderate slopes the relationship is unclear. Examination of the variation of soil loss with erosivity when soil loss for a specific high erosivity condition is known revealed that conversion and power factors are of doubtful value and little generality. A satisfactory predictive equation, a power curve, is seen to be of value only when comparing rainwash soil loss between the higher erosivity conditions. The relationship is most safely considered as soil and site specific. Where the influence of slope and soil erodibility are disregarded, a strong association between soil loss and rainfall intensity is found. That soil loss, and hence, soil erodibility varies non-uniformly with erosivity is clear. The findings indicate caution is required when comparing conclusions drawn from studies based upon different erosivity conditions.
Keywords:Erosivity  Erodibility  Rainfall simulators  Splash  Wash  Rainwash
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号