首页 | 本学科首页   官方微博 | 高级检索  
     


Atmospheric turbulent fluxes over snow
Authors:B. B. Hicks  H. C. Martin
Affiliation:(1) Division of Atmospheric Physics, CSIRO, Aspendale, Victoria, Australia;(2) Atmospheric Environment Service, Downsview, Ontario, Canada
Abstract:On March 26, 1971, eddy fluxes of momentum, sensible heat and water vapour were measured over Lake Mendota, Wisconsin, U.S.A., which was covered by an extensive snowfall. An evaporation rate of about 0.7mm day–1 (2.2 mW cm–2) was detected. Wind speeds were light and the atmosphere near the surface was highly stable. In these conditions, the average sensible heat transfer and Reynolds stress were -0.9 mW cm–2 and 0.10 dyn cm–2, respectively. Comparison with measured gradients of wind speed, temperature and humidity yield a drag coefficient of about 0.54 × 10–3, and bulk transfer coefficients for sensible and latent heat of 0.41 × 10–3 and 0.78 × 10–3, respectively, applied to 10-m data. When corrected for the effect of atmospheric stability, these three coefficients become (in the same order) 1.2 × 10–3, 0.9 × 10–3 and 2.5 × 10–3. The errors in these estimates are such that the drag coefficient is not significantly different from that corresponding to an aerodynamically smooth surface, while the heat coefficients are similar to those normally applied over liquid water surfaces.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号