首页 | 本学科首页   官方微博 | 高级检索  
     


Finite-difference elastic wave propagation in 2D heterogeneous transversely isotropic media1
Authors:Christopher Juhlin
Abstract:The velocity-stress formulation for propagation of elastic seismic waves through 2D heterogeneous transversely isotropic media of arbitrary orientation is presented. The equations are recast into a finite-difference scheme and solved numerically using fourth-order spatial operators and a second-order temporal operator on a staggered grid. Absorbing, free-surface and symmetry boundary conditions have been implemented. Test cases compare well with other published solutions. Synthetic seismograms are calculated over two idealized models: (i) vertical fractures in granite with a dolerite sill reflector and (ii) a dipping anisotropic shale. Comparisons with the isotropic counterparts show significant differences which may have to be accounted for in seismic processing in the future.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号