首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microbial reduction of ferrous arsenate: Biogeochemical implications for arsenic mobilization
Authors:Michael G Babechuk  Christopher G Weisener  Brian J Fryer  Dogan Paktunc  Christian Maunders
Institution:1. Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada N9B 3P4;2. CANMET, Mining and Mineral Sciences Laboratories, 555 Booth Street, Ottawa, Ontario, Canada K1A 0G1;3. Brockhouse Institute for Materials Science, McMaster University, Hamilton, Ontario, Canada L8S 4M1
Abstract:In reduced aqueous environments, the presence of As in solution is a function of both biotic and abiotic mechanisms. Recent studies have demonstrated a significant release of As(III) through the microbial reduction of dissolved and mineral-bound As(V), which raises health concerns when the greater comparative mobility and toxicity of As(III) is considered. These release mechanisms do not operate in isolation but occur in concert with a number of removal processes, including secondary mineralization and sorption to other natural substrates. Thermodynamic and applied experimental studies have shown that ferrous arsenates, such as symplesite Fe(II)3(As(V)O4)2·8H2O], may provide a significant sink for Fe(II) and As(V). In this study, the stability of a representative ferrous arsenate phase in the presence of the arsenate-reducing bacterium Shewanella sp. strain ANA-3 is examined. The reduction of ferrous arsenate by ANA-3 results in the release of aqueous As(III) and, subsequently, the progressive nucleation of a biogenic ferrous arsenite phase proximal to the microbial cells. The valence states of secondary solid-phase products were verified using X-ray absorption spectroscopy (XAS). Electron microscopy reveals that nucleation occurs on cellular exudates which may imply a role of extracellular reduction through c-type cytochromes as investigated in recent literature. These observations provide new insights into the reduction mechanisms of ANA-3 and the biogeochemical cycling of As(III) in natural systems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号