首页 | 本学科首页   官方微博 | 高级检索  
     

计算Stokes公式的快速Hartley变换(FHT)技术
引用本文:宁津生, 晁定波, 李建成. 计算Stokes公式的快速Hartley变换(FHT)技术[J]. 武汉大学学报 ( 信息科学版), 1993, 18(3): 3-10.
作者姓名:宁津生  晁定波  李建成
作者单位:武汉测绘科技大学大地测量系, 武汉珞瑜路39号, 430070
基金项目:国家教委博士点专项科研基金
摘    要:本文提出了利用快速Hartley变换(FHT)计算Stokes公式的方法,这-算法最适合于用来计算实序列的积分变换,而快速Fourier变换(FFT)较适合于用来计算复序列的积分变换。计算Stokes公式只涉及实序列问题,用FHT计算Stokes公式比用FFT算法更有效。本文详细地描述了用FHΥ计算Stokes公式的算法,进行了数值计算,与相应的FFT计算结果作了比较。结果表明,两种算法可以得到相同的精度,但是,FHT的计算速度比FFT的计算速度快-倍以上,且所需要的内存空间只是后者的-半。

关 键 词:Stokcs公式  快速Hartiey变换(FHT)  快速Fourier变换(FFT)  数值积分方法
收稿时间:1992-01-25

A Fast Hartley Transform Techniques of Computing Stokes Formula
Ning Jinsheng, Chao Dingbo, Li Jiancheng. A Fast Hartley Transform Techniques of Computing Stokes Formula[J]. Geomatics and Information Science of Wuhan University, 1993, 18(3): 3-10.
Authors:Ning Jinsheng Chao Dingbo Li Jiancheng
Affiliation:Dept. Geodesy WTUSM. Luoyu Road 39, Wuhan, China, 430070
Abstract:This paper presents a new method for the computation of the Stokes formula using the Fast Hartley Transform(FHT) techniques. The algorithm is most suitable for the computation of real sequence transform, but the Fast Fourier Transform (FFT) techniques is more suitable for the computation of complex sequece transform. The solution of Stokes formula is, however, only associated with a real sequence problem. Therefore the computation of the Stokes formula using FHT techniques is more efficient than using FFT techniques. The procedures of the evaluation of the Stokes formula by FHT techniques are described in detail and correspondingly, some numerical tests are given. By the comparison with both FFT techniques and numerical integration method, the results show that the resulting values of geoidal undulations by FHT techniques are almost the same as by FFT techniques, and the computational speed of FHT technique is about two times faster than that FFT techniques.
Keywords:fast Hartley transform  fast Fourier transform  numerical integration method
本文献已被 CNKI 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号