首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Neptunium and manganese biocycling in nuclear legacy sediment systems
Institution:1. School of Environment, Tsinghua University, Beijing 100084, China;2. Energy Geosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd Berkeley, CA, USA;3. College of Water Sciences, Beijing Normal University, Beijing 100875, China;4. Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education, Beijing Normal University, Beijing 100875, China
Abstract:Understanding the behaviour of the highly radiotoxic, long half-life radionuclide neptunium in the environment is important for the management of radioactively contaminated land and the safe disposal of radioactive wastes. Recent studies have identified that microbial reduction can reduce the mobility of neptunium via reduction of soluble Np(V) to poorly soluble Np(IV), with coupling to both Mn- and Fe(III)- reduction implicated in neptunyl reduction. To further explore these processes Mn(IV) as δMnO2 was added to sediment microcosms to create a sediment microcosm experiment “poised” under Mn-reducing conditions. Enhanced removal of Np(V) from solution occurred during Mn-reduction, and parallel X-ray absorption spectroscopy (XAS) studies confirmed Np(V) reduction to Np(IV) commensurate with microbially-mediated Mn-reduction. Molecular ecology analysis of the XAS systems, which contained up to 0.2 mM Np showed no significant impact of elevated Np concentrations on the microbial population. These results demonstrate the importance of Mn cycling on Np biogeochemistry, and clearly highlight new pathways to reductive immobilisation for this highly radiotoxic actinide.
Keywords:Neptunium  Contaminated land  Biostimulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号