首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical equilibrium model of solution behavior and solubility in the H-Na-K-OH-Cl-HSO4-SO4-H2O system to high concentration and temperature
Authors:Christomir Christov  Nancy Moller
Affiliation:1 Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0340, USA
Abstract:This paper describes a chemical model that calculates solute and solvent activities and solid-liquid equilibria in the H-Na-K-OH-Cl-HSO4-SO4-H2O system from dilute to high solution concentration within the 0° to 250°C temperature range. All binary and ternary subsystems are included in the model parameterization. The model is validated by comparing predictions with experimental data, primarily in higher order systems, not used in the parameterization process. Limitations of the model due to data insufficiencies are discussed.The Harvie and Weare (GCA44, 981, 1980) solubility modeling approach, incorporating their implementation of the concentration-dependent specific interaction equations of Pitzer (J. Phys. Chem.77, 268, 1973), is employed. This model expands the variable temperature Na-K-Cl-SO4-H2O model of Greenberg and Moller (GCA53, 2503, 1989) by including acid (H2SO4, HCl) and base (NaOH, KOH) species. Temperature functions for the chemical potentials of 5 acidic (sodium bisulfate, sodium sesquisulfate, mercallite, potassium sesquisulfate and misenite) and 6 basic (4 sodium hydroxide hydrates and 2 potassium hydroxide hydrates) solid phases are determined.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号