首页 | 本学科首页   官方微博 | 高级检索  
     

江苏省公众气象服务满意度影响因素研究
引用本文:李长顺,赵飞,唐德才. 江苏省公众气象服务满意度影响因素研究[J]. 气象科学, 2015, 35(2): 230-236
作者姓名:李长顺  赵飞  唐德才
作者单位:福建省气象局 气象服务中心, 福州 350001,南京信息工程大学 继续教育学院, 南京 210044,南京信息工程大学 经济管理学院, 南京 210044
基金项目:福建省气象局青年科技专项(2015q15);江苏省高校哲学社会学科重点研究基地重大项目(S7910006001);公益性行业(气象)科研专项(GYHY201106032-03)
摘    要:通过江苏省气象局设计的《江苏省公众气象服务需求调查表》对江苏省13个市及各县区进行整群抽样调查,获取较大数量的公众气象服务满意度样本和数据,选取性别、年龄、属性、行业、本地居住时间、收入6个影响因素。运用单因素方差分析、多因素方差分析和多元线性回归模型,对江苏省公众气象服务满意度进行分析。结果显示在单因素方差分析中,除性别外,其余5个影响因素的差异均为显著。在多因素方差分析中双因素、3因素和4因素交互均不显著。通过多元线性回归进一步分析得出居住时间是影响满意度的最主要因素,而性别是影响最小的因素。

关 键 词:公众气象服务  满意度  方差分析
收稿时间:2013-06-30
修稿时间:2013-11-25

Study on influential factors of public meteorological service satisfaction in Jiangsu
LI Changshun,ZHAO Fei and TANG Decai. Study on influential factors of public meteorological service satisfaction in Jiangsu[J]. Journal of the Meteorological Sciences, 2015, 35(2): 230-236
Authors:LI Changshun  ZHAO Fei  TANG Decai
Affiliation:Meteorological Service Center, Fujian Meteorological Bureau, Fuzhou 350001, China,School of Continuing Education, Nanjing University of Information Science & Technology, Nanjing 210044, China and School of Economics and Management, Nanjing University of Information Science &Technology, Nanjing 210044, China
Abstract:Based on cluster sampling investigation in 13 cities and their affiliated counties in Jiangsu province by the chart of Jiangsu public meteorological service survey designed by Jiangsu meteorological bureau, a larger amount of public meteorological service satisfaction samples and data were collected to select six influential factors such as sex, age, property, occupation, local residence time, income. The one-way anova analysis,multi-factor variance analysis and multiple linear regression were used to study public meteorological service satisfaction of Jiangsu. Results showed that in one-way anova analysis, all the influential factors showed significant difference except sex, while in multi-factor variance analysis, the interaction among double, three and four factors was not significant. The multiple linear regression analysis found that it was the inhabitation time that influenced the public satisfaction most significantly, while the sex was the least one.
Keywords:Public meteorological service  Satisfaction degree  Variance analysis
本文献已被 万方数据 等数据库收录!
点击此处可从《气象科学》浏览原始摘要信息
点击此处可从《气象科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号