首页 | 本学科首页   官方微博 | 高级检索  
     


Subsurface deformation of experimental hypervelocity impacts in quartzite and marble targets
Authors:Rebecca Winkler  Robert Luther  Michael H. Poelchau  Kai Wünnemann  Thomas Kenkmann
Affiliation:1. Institute of Earth and Environmental Sciences—Geology, Albert-Ludwigs-Universität Freiburg (ALU), Albertstraße 23-B, D-79104 Freiburg, Germany;2. Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, D-10115 Berlin, Germany
Abstract:Two impact cratering experiments on nonporous rock targets were carried out to determine the influence of target composition on the structural mechanisms of subsurface deformation. Projectiles of 2.5 mm diameter were accelerated to ~5 km s−1 and impacted onto blocks of marble or quartzite. Subsurface deformation was mapped and analyzed on the microscale using thin sections of the bisected craters. Additionally, both experiments were modeled and the calculated strain zones underneath the craters were compared to experimental deformation features. Microanalysis shows that the formation of radial, tensile, and intragranular cracks is a common response of both nonporous materials to impact cratering. In the quartzite target, the subsurface damage is additionally characterized by highly localized deformation along shear bands with intense grain comminution, surrounded by damage zones. In contrast, the marble target shows closely spaced calcite twinning and cleavage activation. Crater diameter and depth as well as the damage lens underneath the crater are unexpectedly smaller in the marble target compared to the quartzite target, which is in contradiction to the marble's much weaker compressive and tensile strengths. However, numerical models result in craters that are similar in size as well as in strain accumulation at the end of transient crater formation, indicating that current models should still be viewed cautiously when compared to experimental details.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号