首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Towards self-consistent modeling of the martian dichotomy: The influence of one-ridge convection on crustal thickness distribution
Authors:Tobias Keller  Paul J Tackley
Institution:Institute of Geophysics, Sonneggstrasse 5, ETH Zurich, 8092 Zurich, Switzerland
Abstract:In order to find an explanation for the origin of the martian crustal dichotomy, a number of recent papers have examined the effect of layered viscosity on the evolution of a degree-1 mantle convection, e.g. Roberts and Zhong Roberts, J.H., Zhong, S., 2006. J. Geophys. Res. 111. E06013] and Yoshida and Kageyama Yoshida, M., Kageyama, A., 2006. J. Geophys. Res. 111, doi:10.1029/2005JB003905. B03412]. It was found that a mid-mantle viscosity jump, combined with highly temperature- and depth-dependent rheology, are effective in developing a degree-1 convection within a short timescale. Such a layered viscosity profile could be justified by martian mineralogy. However, the effect of a degree-1 convective planform on the crustal thickness distribution has not yet been demonstrated. It is not obvious whether a thinner crust, due to sublithospheric erosion and crustal thinning, or a thicker crust, due to enhanced crustal production, would form above the hemisphere of mantle upwelling. Also, the general shape of the dichotomy, which is not strictly hemispherical, has not yet been fully investigated. Here we propose a model of the crustal patterns produced by numerical simulations of martian mantle convection, using the finite-volume multigrid code StagYY Tackley, P.J., 2008. Phys. Earth Planet. Int. 107, 7-18, doi:10.1016/j.pepi.2008.08.005] A self-consistent treatment of melting, crustal formation and chemical differentiation has been added to models of three-dimensional thermal convection. This allows us to obtain global maps of the crustal thickness distribution as it evolves with time. The obtained results demonstrate that it is indeed possible to form a crustal dichotomy as a consequence of near degree-1 mantle convection early in Mars' history. We find that some of the observed patterns show intriguing first order similarities to the elliptical shape of the martian dichotomy. In all models, the region of thick crust is located over the region of mantle upwelling, which itself is a ridge-like structure spread over roughly one half of the planet, a planform we describe as “one-ridge convection.”
Keywords:Geophysics  Planetary dynamics  Mars
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号