首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the population, physical decay and orbital distribution of Jupiter family comets: Numerical simulations
Authors:Romina P Di Sisto  Julio A Fernández
Institution:a Facultad de Ciencias Astronómicas y Geofísicas and IALP - CCT La Plata - CONICET. Paseo de Bosque s/n 1900 La Plata, Buenos Aires, Argentina
b Departamento de Astronomía, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
Abstract:We study the Jupiter family comet (JFC) population assumed to come from the Scattered Disk and transferred to the Jupiter’s zone through gravitational interactions with the Jovian planets. We shall define as JFCs those with orbital periods View the MathML source and Tisserand parameters in the range 2<T?3.1, while those comets coming from the same source, but that do not fulfill the previous criteria (mainly because they have periods View the MathML source) will be called ‘non-JFCs’. We performed a series of numerical simulations of fictitious comets with a purely dynamical model and also with a more complete dynamical-physical model that includes besides nongravitational forces, sublimation and splitting mechanisms. With the dynamical model, we obtain a poor match between the computed distributions of orbital elements and the observed ones. However with the inclusion of physical effects in the complete model we are able to obtain good fits to observations. The best fits are attained with four splitting models with a relative weak dependence on q, and a mass loss in every splitting event that is less when the frequency is high and vice versa. The mean lifetime of JFCs with radii View the MathML source and View the MathML source is found to be of about 150-200 revolutions (∼View the MathML source. The total population of JFCs with radii View the MathML source within Jupiter’s zone is found to be of 450±50. Yet, the population of non-JFCs with radii View the MathML source in Jupiter-crossing orbits may be ∼4 times greater, thus leading to a whole population of JFCs + non-JFCs of ∼2250±250. Most of these comets have perihelia close to Jupiter’s orbit. On the other hand, very few non-JFCs reach the Earth’s vicinity (perihelion distances View the MathML source) which gives additional support to the idea that JFCs and Halley-type comets have different dynamical origins. Our model allows us to define the zones of the orbital element space in which we would expect to find a large number of JFCs. This is the first time, to our knowledge, that a physico-dynamical model is presented that includes sublimation and different splitting laws. Our work helps to understand the role played by these erosion effects in the distribution of the orbital elements and lifetimes of JFCs.
Keywords:Comets  dynamics  Comets  origin  Trans-neptunian objects
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号