首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The interior structure of Mercury and its core sulfur content
Authors:A Rivoldini  T Van Hoolst  O Verhoeven
Institution:Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels, Belgium
Abstract:Depth-dependent interior structure models of Mercury are calculated for several plausible chemical compositions of the core and of the mantle. For those models, we compute the associated libration amplitude, obliquity, tidal deformation, and tidal changes in the external potential. In particular we study the relation between the interior structure parameters for five different mantle mineralogies and two different temperature profiles together with two extreme crust density values. We investigate the influence of the core light element concentration, temperature, and melting law on core state and inner and outer core size. We show that a sulfur concentration above 10 wt% is unlikely if the temperature at the core-mantle boundary is above 1850 K and the silicate shell at least 240 km thick. The interior models can only have an inner core if the sulfur weight fraction is below 5 wt% for core-mantle boundary temperature in the 1850-2200 K range. Within our modeling hypotheses, we show that with the expected precision on the moment of inertia the core size can be estimated to a precision of about 50 km and the core sulfur concentration with an error of about 2 wt%. This uncertainty can only be reduced when more information on the mantle mineralogy of Mercury becomes available. However, we show that the uncertainty on the core size estimation can be greatly reduced, to about 25 km, if tidal surface displacements and tidal variations in the external potential are considered.
Keywords:Mercury  interiors  Rotational dynamics  Tides  solid body  Resonances  spin-orbit
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号