首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Models of Jupiter's growth incorporating thermal and hydrodynamic constraints
Authors:Jack J Lissauer  Olenka Hubickyj  Gennaro D'Angelo  Peter Bodenheimer
Institution:a NASA Ames Research Center, Space Science and Astrobiology Division, MS 245-3, Moffett Field, CA 94035, USA
b UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
Abstract:We model the growth of Jupiter via core nucleated accretion, applying constraints from hydrodynamical processes that result from the disk-planet interaction. We compute the planet's internal structure using a well tested planetary formation code that is based upon a Henyey-type stellar evolution code. The planet's interactions with the protoplanetary disk are calculated using 3-D hydrodynamic simulations. Previous models of Jupiter's growth have taken the radius of the planet to be approximately one Hill sphere radius, RH. However, 3-D hydrodynamic simulations show that only gas within ∼0.25RH remains bound to the planet, with the more distant gas eventually participating in the shear flow of the protoplanetary disk. Therefore in our new simulations, the planet's outer boundary is placed at the location where gas has the thermal energy to reach the portion of the flow not bound to the planet. We find that the smaller radius increases the time required for planetary growth by ∼5%. Thermal pressure limits the rate at which a planet less than a few dozen times as massive as Earth can accumulate gas from the protoplanetary disk, whereas hydrodynamics regulates the growth rate for more massive planets. Within a moderately viscous disk, the accretion rate peaks when the planet's mass is about equal to the mass of Saturn. In a less viscous disk hydrodynamical limits to accretion are smaller, and the accretion rate peaks at lower mass. Observations suggest that the typical lifetime of massive disks around young stellar objects is ∼3 Myr. To account for the dissipation of such disks, we perform some of our simulations of Jupiter's growth within a disk whose surface gas density decreases on this timescale. In all of the cases that we simulate, the planet's effective radiating temperature rises to well above 1000 K soon after hydrodynamic limits begin to control the rate of gas accretion and the planet's distended envelope begins to contract. According to our simulations, proto-Jupiter's distended and thermally-supported envelope was too small to capture the planet's current retinue of irregular satellites as advocated by Pollack et al. Pollack, J.B., Burns, J.A., Tauber, M.E., 1979. Icarus 37, 587-611].
Keywords:Jovian planets  Jupiter  interior  Accretion  Planetary formation  Planet-disk interaction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号