首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The impact of methane thermodynamics on seasonal convection and circulation in a model Titan atmosphere
Authors:Jonathan L Mitchell  Raymond T Pierrehumbert  Rodrigo Caballero
Institution:a Institute for Advanced Study, Princeton, NJ 08540, USA
b Department of Geophysical Sciences, The University of Chicago, Chicago, IL 60637, USA
c Department of Atmospheric Sciences, The University of Washington, Seattle, WA, USA
d School of Mathematical Sciences, University College Dublin, Dublin, Ireland
Abstract:We identify mechanisms controlling the distribution of methane convection and large-scale circulation in a simplified, axisymmetric model atmosphere of Titan forced by gray radiation and moist (methane) convection. The large-scale overturning circulation, or Hadley cell, is global in latitudinal extent and provides fundamental control of precipitation and tropospheric winds. The precipitating, large-scale updraft regularly oscillates in latitude with seasons. The distance of greatest poleward excursion of the Hadley cell updraft is set by the mass of the convective layer of the atmosphere; convection efficiently communicates seasonal warming of the surface through the cold and dense lower atmosphere, increasing the heat capacity of the system. The presence of deep, precipitating convection introduces three effects relative to the case with no methane latent heating: (1) convection is narrowed and enhanced in the large-scale updraft of the Hadley cell; (2) the latitudinal amplitude of Hadley cell updraft oscillations is decreased; and (3) a time lag is introduced. These effects are observable in the location and timing of convective methane clouds in Titan’s atmosphere as a function of season. A comparison of simulations over a range of convective regimes with available observations suggest methane thermodynamic-dynamic feedback is important in the Titan climate.
Keywords:Titan  Atmospheres  Dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号