首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Petrology,geochemistry, and age of the Spurr volcanic complex,eastern Aleutian arc
Authors:Nye  Christopher J  Turner  Donald L
Institution:(1) Geophysical Institute, University of Alaska Fairbanks, 99775 Fairbanks, AK, USA
Abstract:The Spurr volcanic complex (SVC) is a calc-alkaline, medium-K, sequence of andesites erupted over the last 250000 years by the eastern-most currently active volcanic center in the Aleutian arc. The ancestral Mt. Spurr was built mostly of andesites of uniform composition (58%–60% SiO2), although andesite production was episodically interrupted by the introduction of new batches of more mafic magma. Near the end of the Pleistocene the ancestral Mt. Spurr underwent avalanche caldera formation, resulting in the production of a volcanic debris avalanche with overlying ashflows. Immediately afterward, a large dome (the present Mt. Spurr) formed in the caldera. Both the ash flows and dome are made of acid andesite more silicic (60%–63% SiO2) than any analyzed lavas from the ancestral Mt. Spurr, yet contain olivine and amphibole xenocrysts derived from more mafic magma. The mafic magma (53%–57% SiO2) erupted during and after dome emplacement from a separate vent only 3 km away. Hybrid block-and-ash flows and lavas were also produced. The vents for the silicic and mafic lavas are in the center and in the breach of the 5-by-6-km horseshoe-shaped caldera, respectively, and are less than 4 km apart. Late Holocene eruptive activity is restricted to Crater Peak, and magmas continue to be relatively mafic. SVC lavas are plag ±ol+cpx±opx+mt bearing. All postcaldera units contain small amounts of high-Al2O3, high-alkali amphibole, and proto-Crater Peak and Crater Peak lavas contain abundant pyroxenite and anorthosite clots presumably derived from an immediately preexisting magma chamber. Ranges of mineral chemistries within individual samples are often nearly as large as ranges of mineral chemistries throughout the SVC suite, suggesting that magma mixing is common. Elevated Sr, Pb, and O isotope ratios and trace-element systematics incompatible with fractional crystallization suggest that a significant amount of continental crust from the upper plate has been assimilated by SVC magmas during their evolution.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号