首页 | 本学科首页   官方微博 | 高级检索  
     

能见度集合预报及后处理技术应用
引用本文:谢超,马学款,王继康,饶晓琴,张碧辉. 能见度集合预报及后处理技术应用[J]. 气象科技, 2024, 52(3): 356-366
作者姓名:谢超  马学款  王继康  饶晓琴  张碧辉
作者单位:国家气象中心,北京 100081
基金项目:国家重点研发计划课题典型灾害天气公里级滚动预报关键技术研究与示范应用(2021YFC3000905)、中国气象局创新发展专项(CXFZ2021Z012)资助
摘    要:基于污染物情况、环流系统和时空分布特征分析,利用神经网络对历史数据进行建模,生成了能见度集合预报产品。在2022年冬季的TS评分检验中,预报产品优于欧洲中期数值预报中心模式(ECMWF)的能见度预报产品。利用概率匹配、最优百分位和神经网络三种后处理方法生成后处理产品,这些产品的TS评分优于集合预报产品。预报输入的ECMWF模式2 m湿度与实况的偏差是误差的主要来源。利用集成方法对三种后处理产品进行集成,其TS评分结果在低能见度区间总体接近或略优于原始产品。生成的能见度集合预报后处理最优集成预报产品成功提高了对中期延伸期能见度天气的预测准确性。

关 键 词:能见度;CAMx模式;集合预报;后处理;最优集成
收稿时间:2023-04-11
修稿时间:2024-01-19

Application of Visibility Ensemble Forecast and Post-processing Techniques
XIE Chao,MA Xuekuan,WANG Jikang,RAO Xiaoqin,ZHANG Bihui. Application of Visibility Ensemble Forecast and Post-processing Techniques[J]. Meteorological Science and Technology, 2024, 52(3): 356-366
Authors:XIE Chao  MA Xuekuan  WANG Jikang  RAO Xiaoqin  ZHANG Bihui
Affiliation:National Meteorological Center, Beijing 100081
Abstract:This study aims to improve the forecast capability of mid-to-long term visibility by analysing the impact of pollution levels, circulation systems, and spatiotemporal distribution characteristics on low visibility weather. A neural network approach is utilised to model over 2500 stations nationwide, incorporating multi-year meteorological observations, pollution data, and reanalysis data. The selection of model structure and parameterisation schemes takes into account performance evaluations based on empirical formulas and varying parameter values across different datasets. Cross-validation is employed to split the neural network datasets into training and validation sets during the parameter training phase. Different parameterisation schemes are applied to train the models on the training set, and their performance is assessed on the validation set. By comparing the models’ performance under different parameterisation schemes, an optimal balance between fitting accuracy and generalisation capability is achieved. Using the previously established forecasting models, a visibility ensemble forecast product is created based on 15-day PM2.5 CAMx-NCEP model, observed data, and ECMWF ensemble forecast. The ensemble forecast product includes control forecast values, ensemble means, and 50th percentile values. In the winter of 2022, the TS score evaluation test in all forecast durations, including medium-to-long term, shows that the ensemble forecast’s control forecast values and ensemble means outperform the 50th percentile forecast values and ECMWF’s visibility products in the visibility ranges of 1 km, 1-3 km, and 3-5 km. For the visibility ranges of 5-10 km and greater than 10 km, the TS scores of the control forecast values, ensemble means, 50th percentile forecast values, and ECMWF’s visibility products are relatively close. Based on the visibility ensemble forecast product, three post-processing methods (probability matching, optimal percentiles, and neural networks) are developed to improve forecast TS scores compared to the ensemble forecast product. The average TS scores for visibility below 1 km are 0.126, 0.126, and 0.130 for the optimal percentiles, probability matching, and neural network methods, respectively. For visibility in the range of 1-3 km, the average TS scores are 0.168, 0.168, and 0.170, respectively. These post-processing methods provide an improvement of around 10% and 7% for visibility below 1 km and in the 1-3 km range, respectively, compared to the ensemble forecast. Analysis of the forecast model reveals errors primarily originating from discrepancies between the ECMWF model’s input factors and observed values, such as 2 m humidity and wind fields. Each post-processing method exhibits advantages in different forecast lead times and visibility ranges, which are integrated using statistical methods for optimal ensemble forecasting. The TS score evaluation of the visibility post-processing optimal ensemble shows overall similarity or slight superiority compared to individual methods in the low visibility range. The minimum ensemble method slightly outperforms mean and weighted ensemble products in TS scores between 0-3 km but performs worse above 3 km. To emphasise the forecast focus on low visibility, the minimum ensemble method is selected to generate the optimal ensemble forecast product, enhancing the forecast service capability for low visibility weather during the extended period.
Keywords:visibility   CAMx model   ensemble forecast   post-processing   optimal integration.
点击此处可从《气象科技》浏览原始摘要信息
点击此处可从《气象科技》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号