首页 | 本学科首页   官方微博 | 高级检索  
     检索      


‘ Global Change ’ Impact of Inter-Annual Variation in Water Discharge as a Driving Factor to Dredging and Spoil Disposal in the River Rhine System and of Turbidity in the Wadden Sea
Authors:V N de Jong  D J de Jong
Institution:a Department of Marine Biology, University of Groningen, PO Box 14, 9750 AA, Haren, The Netherlands;b National Institute for Coastal and Marine Management/RIKZ, PO Box 8039, 4330 EA, Middelburg, The Netherlands
Abstract:Between 1970 to 2000, the annual mean suspended matter (SPM) concentrations in the Vlie and Marsdiep tidal inlets of the Wadden Sea varied over five times. The present paper examines the possible relationship between SPM in the Wadden Sea and changing river Rhine discharges and dredging operations. The major short-term variations in annual mean SPM in part of the Wadden Sea appears to be a non-linear, exponential, function of river Rhine discharge and dredge spoil disposal (110 km to over 200 km from the area in front of the Dutch coast near the river Rhine outlet). Correlation coefficients (with SPM as the fixed and dredge disposal as the independent variable) ranged from R=0·8 (deep tidal inlet of Marsdiep) to R=0·2 (shallow inner area of Vlie) and weakened mainly as a function of distance to the disposal site. The best correlation with river discharge was for Marsdiep tidal inlet (r=0·45), indicating the superior effect of dredge disposal over river discharge-related processes. Taking the estimated regression equation as an explorative model, indicates that, without any disposal of dredge spoil, the expected SPM concentration levels in the tidal inlets of the Wadden Sea will be <15 g m−3 (comparable to the 1950s). The overall mean (and the highest mean) annual concentrations for the investigation period reached 42 (90) g m−3 at Marsdiep and 35 (75) g m−3 at Vlie. Assuming a 10% (220 m−3 s−1) increase in river Rhine discharge over the next 50 years, and unchanged dredging policy and other circumstances, SPM concentrations would increase 5–15% for Marsdiep and Vlie. Compared with the calculated (12·4 g m−3 SPM in Marsdiep and 14·8 g m−3 SPM in Vlie) and measured (15 g m−3 SPM in Marsdiep) background SPM concentrations, the expected overall mean increase since 1950 is at least 250% of background. The natural variation in river Rhine discharge will cause further inter-annual variation. Changes in SPM concentrations, due to expected changes in wind climate, combined with river discharge are estimated to increase SPM concentrations 20% above the present situation. The possible implications of changes in land use in combination with further increasing river discharge, changed wind fields and increased temperature are discussed. An important management conclusion is that increasing mean river discharge will significantly increase the need for dredging and spoil disposal, and result in further elevated SPM concentrations in the Dutch coastal zone and the Wadden Sea. The presented relationships offer possibilities for developing new management strategies in relation to dredging and its effects.
Keywords:wind  temperature  river discharge  suspended matter  dredging       global change       estuary  primary production  microphytobenthos  fauna  filter feeders
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号