首页 | 本学科首页   官方微博 | 高级检索  
     检索      


RING CURRENT DYNAMICS DURING THE 13–18 JULY 2000 STORM PERIOD
Authors:Jordanova  VK  Thorne  RM  Farrugia  CJ  Dotan  Y  Fennell  JF  Thomsen  MF  Reeves  GD  McComas  DJ
Institution:(1) Space Science Center, University of New Hampshire, Durham, NH, 03824, U.S.A;(2) UCLA, Department of Atmospheric Sciences, Los Angeles, CA, 90095, U.S.A;(3) Aerospace Corporation, Los Angeles, CA, 90009, U.S.A;(4) Los Alamos National Laboratory, Los Alamos, NM, 87545, U.S.A;(5) Southwest Research Institute, San Antonio, TX, 78228, U.S.A
Abstract:We study the development of the terrestrial ring current during the time interval of 13–18 July, 2000, which consisted of two small to moderate geomagnetic storms followed by a great storm with indices Dst=−300 nT and Kp=9. This period of intense geomagnetic activity was caused by three interplanetary coronal mass ejecta (ICME) each driving interplanetary shocks, the last shock being very strong and reaching Earth at ∼ 14 UT on 15 July. We note that (a) the sheath region behind the third shock was characterized by B z fluctuations of ∼35 nT peak-to-peak amplitude, and (b) the ICME contained a negative to positive B z variation extending for about 1 day, with a ∼ 6-hour long negative phase and a minimum B z of about −55 nT. Both of these interplanetary sources caused considerable geomagnetic activity (Kp=8 to 9) despite their disparity as interplanetary triggers. We used our global ring current-atmosphere interaction model with initial and boundary conditions inferred from measurements from the hot plasma instruments on the Polar spacecraft and the geosynchronous Los Alamos satellites, and simulated the time evolution of H+, O+, and He+ ring current ion distributions. We found that the O+ content of the ring current increased after each shock and reached maximum values of ∼ 60% near minimum Dst of the great storm. We calculated the growth rate of electromagnetic ion cyclotron waves considering for the first time wave excitation at frequencies below O+ gyrofrequency. We found that the wave gain of O+ band waves is greater and is located at larger L shells than that of the He+ band waves during this storm interval. Isotropic pitch angle distributions indicating strong plasma wave scattering were observed by the imaging proton sensor (IPS) on Polar at the locations of maximum predicted wave gain, in good agreement with model simulations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号