首页 | 本学科首页   官方微博 | 高级检索  
     

基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测
引用本文:黄蕊,王铮,丁冠群,龚洋冉,刘昌新. 基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测[J]. 地理研究, 2016, 35(4): 781-789. DOI: 10.11821/dlyj201604015
作者姓名:黄蕊  王铮  丁冠群  龚洋冉  刘昌新
作者单位:1. 南京师范大学虚拟地理环境教育部重点实验室,南京 2100232. 江苏省地理信息资源开发与利用协同创新中心,南京 2100233. 华东师范大学地理信息科学教育部重点实验室,上海 2000624. 中国科学院科技政策与管理科学研究所,北京 1001905. 中国农业大学经济管理学院, 北京 100083
基金项目:国家重点基础研究发展计划(973)项目(2012CB955803);国家自然科学基金项目(41271551,71201157)
摘    要:定量分析碳排放的影响因素,对降低区域碳排放具有重要的指导意义。利用STIRPAT模型,定量分析江苏省能源消费碳排放量与人口、富裕度(以人均GDP表示)、技术进步(以能源强度表示)和城镇化水平之间的关系,通过岭回归拟合后发现,人口数量、人均GDP、能源强度、城市化水平每变化1%,江苏省能源消费碳排放量将分别发生3.467%、(0.242+0.024 lnA)%、0.313%和0.151%的变化。在以上研究的基础上,设置8种不同的发展情景,分析了江苏省未来能源消费碳排放量的发展趋势。结果表明,当人口、经济保持低速增长,并保持高技术增长率时,有利于控制江苏省的能源消费碳排放量,2020年江苏省的能源消费碳排放量预测值为202.81 MtC。

关 键 词:碳排放  STIRPAT模型  影响因素  岭回归  
收稿时间:2015-10-19
修稿时间:2016-01-27

Trend prediction and analysis of influencing factors of carbon emissions from energy consumption in Jiangsu province based on STIRPAT model
Rui HUANG,Zheng WANG,Guanqun DING,Yangran GONG,Changxin LIU. Trend prediction and analysis of influencing factors of carbon emissions from energy consumption in Jiangsu province based on STIRPAT model[J]. Geographical Research, 2016, 35(4): 781-789. DOI: 10.11821/dlyj201604015
Authors:Rui HUANG  Zheng WANG  Guanqun DING  Yangran GONG  Changxin LIU
Abstract:Quantitative analysis of influencing factors of carbon emissions has an important guiding effect on reducing regional carbon emissions. This article, based on STIRPAT model, made an analysis of several factors influencing carbon emissions from energy consumption in Jiangsu province, respectively population, affluence (in form of per capita GDP), techonology (in form of energy intensity) and urbanization. The results of Ridge regression showed that for 1% change in population, per capita GDP, energy intensity and the level of urbanization, there was 3.467%, (0.242+0.024lnA)%, 0.313%, and 0.151% change in energy carbon emissions in Jiangsu, respectively. Based on this study, the paper set eight scenarios to furthur analyze and predict the future trend of carbon emission in Jiangsu. It is found that low growth rate of population, low growth rate of per capita GDP and high technology progress rate would help to control carbon emissions, and the carbon emissions in 2020 would be 202.81 MtC in that case. To control Jiangsu's future carbon emissions, it is essential to not only improve the technology progress rate and control the population quantity, but also to reduce the growth rate of per capita GDP, which indicates the government should slow down economic development and transform the economic growth mode to New Normal.
Keywords:energy carbon emissions  STIRPAT model  influencing factors  Ridge regression  
本文献已被 CNKI 等数据库收录!
点击此处可从《地理研究》浏览原始摘要信息
点击此处可从《地理研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号