Effects of sample size on the accuracy of geomorphological models |
| |
Authors: | Jan Hjort Mathieu Marmion |
| |
Affiliation: | aDepartment of Geography, P.O. Box 64, FI-00014 University of Helsinki, Finland;bDepartment of Geography, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland |
| |
Abstract: | Commonly, the most costly part of geomorphological distribution modelling studies is gathering the data. Thus, guidance for researchers concerning the quantity of field data needed would be extremely practical. This paper scrutinises the relationship between the sample size (the number of observations varied from 20 to 600) and the predictive ability of the generalized linear model (GLM), generalized additive model (GAM), generalized boosting method (GBM) and artificial neural network (ANN) in two data settings, i.e., independent and split-sample approaches. The study was performed using empirical data of periglacial processes from an area of 600 km2 in northernmost Finland at grid resolutions of 1 ha (100 × 100 m) and 25 ha (500 × 500 m). A rather sharp increase in the predictive ability of the models was observed when the number of observations increased from 20 to 100, and the level of robust predictions was reached with 200 observations. The result indicates that no more than a few hundred observations are needed in geomorphological distribution modelling at a medium scale resolution (ca. 0.01–1 km2). |
| |
Keywords: | Generalized linear model (GLM) Generalized additive model (GAM) Generalized boosting method (GBM) Artificial neural networks (ANN) Predictive mapping Periglacial |
本文献已被 ScienceDirect 等数据库收录! |
|