首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical analysis of soil vibrations due to trains moving at critical speed
Authors:Xuecheng Bian  Chong Cheng  Jianqun Jiang  Renpeng Chen  Yunmin Chen
Affiliation:1.Department of Civil Engineering, Key Laboratory of Soft Soils and Geoenvironmental Engineering, MOE,Zhejiang University,Hangzhou,China;2.Institute of Hydraulic Structure and Water Environment,Zhejiang University,Hangzhou,China
Abstract:High-speed train induced vibrations of track structure and underlying soils differ from that induced by low-speed train. Determining the critical speed of train operation remains difficult due to the complex properties of the track, embankment and ground. A dynamic analysis model comprising track, embankment and layered ground was presented based on the two-and-half-dimensional (2.5D) finite elements combining with thin-layer elements to predict vibrations generated by train moving loads. The track structure is modeled as an Euler–Bernoulli beam resting on embankment. The train is treated as a series of moving axle loads; the embankment and ground are modeled by the 2.5D finite elements. The dynamic responses of the track structure and the ground under constant and vibrating moving loads at various speeds are presented. The results show that the critical speed of a train moving on an embankment is higher than the Rayleigh wave velocity of the underlying soil, attributed to the presence of the track structure and the embankment. It is found that the dynamic response of ground induced by moving constant loads is mostly dominated by train speed. While for the moving load with vibration frequency, the ground response is mostly affected by the vibration frequency instead of train speed. Mach effect appears when the train speed exceeds the critical speed of the track–embankment–ground system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号