首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of elasto-plastic electro-osmosis consolidation at large strain
Authors:Jiao Yuan  Michael A Hicks
Institution:1.Section of Geo-Engineering, Department of Geoscience and Engineering, Faculty of Civil Engineering and Geosciences,Delft University of Technology,Delft,The Netherlands
Abstract:In this paper, a numerical solution for the electro-osmosis consolidation of clay in multi-dimensional domains at large strains is presented, with the coupling of the soil mechanical behaviour, pore water transport and electrical fields being considered. In particular, the Modified Cam Clay model is employed to describe the elasto-plastic behaviour of clay, and some empirical expressions are used to consider the nonlinear variation of the hydraulic and electrical conductivities of the soil mass during the consolidation processes. The implementation of the theoretical model in a finite element code allows for analysis of the evolution of the transient response of the clay subjected to electro-osmosis treatment. The proposed model is verified via comparison with data from a large strain electro-osmosis laboratory test, to demonstrate its accuracy and effectiveness. Various numerical examples are also investigated to study the deformation characteristics and time-dependent evolution of the excess pore pressure. Finally, a well-documented field application of electro-osmosis is simulated to provide further verification. The results show that the numerical solution is effective in predicting the nonlinear behaviour of clay during electro-osmosis consolidation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号