首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strength,fragmentation and fractal properties of mixed flaws
Authors:Ke Zhang  Ping Cao  Guowei Ma  Weihua Wang  Wencheng Fan  Kaihui Li
Institution:1.Faculty of Electric Power Engineering,Kunming University of Science and Technology,Kunming,China;2.School of Resources and Safety Engineering,Central South University,Changsha,China;3.School of Civil, Environmental and Mining Engineering,The University of Western Australia,Perth,Australia
Abstract:Experiments on Portland cement samples containing mixed flaws are conducted to investigate the strength, fragmentation and fractal properties. Flaw geometry is a new combination of two edge-notched flaws and an imbedded flaw, which is different from those in the previous studies, where parallel or coplanar flaws are used. The physical implications of the shear-box test applied to result to rock slopes are studied. The physical and analytical fragmentation characteristics of preflawed samples are analyzed through the sieve test and fractal theory, respectively. Three different patterns of tensile cracks and shear cracks are observed. A sliding crack model is presented to elucidate the brittle failure flaws. In all of the cases of the shear-box tests, the coalescence is produced by the linkage of shear cracks, and two types of coalescence (Type C1 and Type C2) have been classified, which tend to confirm the observations from the numerical model and field of jointed rock slopes. The shear strength is a function of the flaw geometry and the shear–normal stress ratio. The result of sieve tests indicates that the fragment size distribution of fragments has the fractal property, providing a physical understanding of the fragmentation mechanism. The fragments under the shear-box test have fractal dimensions between 2.2 and 2.6, which are larger than those under the compression test but similar to those in the fault cores. The fragmentation in the case of Type C2 has a smaller fractal dimension, corresponding to a larger shear strength.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号