首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fe-Ni-Co-O-S Phase Relations in Peridotite-Seawater Interactions
Authors:Klein  Frieder; Bach  Wolfgang
Institution:Geoscience Department, University of Bremen, Klagenfurter Straße, 28359 Bremen, Germany
Abstract:Serpentinization of abyssal peridotites is known to produceextremely reducing conditions as a result of dihydrogen (H2,aq)release upon oxidation of ferrous iron in primary phases toferric iron in secondary minerals by H2O. We have compiled andevaluated thermodynamic data for Fe–Ni–Co–O–Sphases and computed phase relations in fO2,g–fS2,g andaH2,aq–aH2S,aq diagrams for temperatures between 150 and400°C at 50 MPa. We use the relations and compositions ofFe–Ni–Co–O–S phases to trace changesin oxygen and sulfur fugacities during progressive serpentinizationand steatitization of peridotites from the Mid-Atlantic Ridgein the 15°20'N Fracture Zone area (Ocean Drilling ProgramLeg 209). Petrographic observations suggest a systematic changefrom awaruite–magnetite–pentlandite and heazlewoodite–magnetite–pentlanditeassemblages forming in the early stages of serpentinizationto millerite–pyrite–polydymite-dominated assemblagesin steatized rocks. Awaruite is observed in all brucite-bearingpartly serpentinized rocks. Apparently, buffering of silicaactivities to low values by the presence of brucite facilitatesthe formation of large amounts of hydrogen, which leads to theformation of awaruite. Associated with the prominent desulfurizationof pentlandite, sulfide is removed from the rock during theinitial stage of serpentinization. In contrast, steatitizationindicates increased silica activities and that high-sulfur-fugacitysulfides, such as polydymite and pyrite–vaesite solidsolution, form as the reducing capacity of the peridotite isexhausted and H2 activities drop. Under these conditions, sulfideswill not desulfurize but precipitate and the sulfur contentof the rock increases. The co-evolution of fO2,g–fS2,gin the system follows an isopotential of H2S,aq, indicatingthat H2S in vent fluids is buffered. In contrast, H2 in ventfluids is not buffered by Fe–Ni–Co–O–Sphases, which merely monitor the evolution of H2 activitiesin the fluids in the course of progressive rock alteration.The co-occurrence of pentlandite–awaruite–magnetiteindicates H2,aq activities in the interacting fluids near thestability limit of water. The presence of a hydrogen gas phasewould add to the catalyzing capacity of awaruite and would facilitatethe abiotic formation of organic compounds. KEY WORDS: serpentinization; ODP Expedition 209; sulfide; oxygen fugacity; sulfur fugacity; hydrothermal system; metasomatism; Mid-Atlantic Ridge
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号