首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Three-dimensional-seismic coherency signature of Niger Delta growth faults: integrating sedimentology and tectonics
Authors:S Back  C Höcker†  M B Brundiers ‡  P A Kukla
Institution:Geological Institute, RWTH Aachen University, Aachen, Germany; Shell International Exploration and Production, Rijswijk, The Netherlands; Wintershall AG, Kassel, Germany
Abstract:This case study of growth faults and associated deltaic sedimentation in the shallow‐offshore Niger Delta uses an integrated analysis of three‐dimensional (3D)‐seismic coherence facies and wireline data that supports an evaluation of the sedimentary response to delta tectonics. The study area comprises four fault blocks bounded by a set of kilometre‐scale, basinward‐dipping, synsedimentary normal faults. Correlation of highly variable growth stratigraphy across faults was achieved by a systematic visualization and interpretation of series of coherence horizon‐slices: the detection and matching of erosive and depositional patterns (e.g. channels) across faults allowed the establishment of sedimentology‐controlled links between diverse footwall and hanging‐wall growth successions. At the same time, this interpretation approach helped to visualize seismic‐sedimentological and seismic‐geomorphological features survey‐wide at all depth levels. The integration of this extensive 3D database with lithology information from wireline logs provides a powerful tool for subsurface sedimentology interpretation. Synoptic analysis of the 3D‐seismic sedimentology interpretation with stratigraphy based fault‐kinematic analysis using throw vs. depth plots (Th–Z plots) enabled a discussion of the relation between delta tectonics and sedimentary‐system development, and the evaluation of the Th–Z method for subsurface‐lithology prediction. The interpretation results document that both motion analysis of synsedimentary deltaic faults and Th–Z‐based lithology prediction are only feasible when supported by detailed 3D information on palaeoenvironment and palaeotopography at and around studied fault systems. We therefore recommend the use of fast‐track fault‐kinematic and subsurface‐lithology predictions based on Th–Z plots only when supported by comprehensive 3D seismic‐sedimentological interpretations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号