首页 | 本学科首页   官方微博 | 高级检索  
     


Conceptual seismic design in performance-based earthquake engineering
Authors:Gerard J. O'Reilly  Gian Michele Calvi
Affiliation:Scuola Universitaria Superiore IUSS, Pavia, Italy
Abstract:A principal aspect of seismic design is the verification of performance limit states, which help ensure satisfactory behaviour within a performance-based earthquake engineering framework. However, it is increasingly acknowledged that while ensuring life safety is a suitable basic design requirement, more meaningful metrics of seismic performance exist. Expected annual loss (EAL) has gained attention in recent years but tends to be limited to seismic assessment. This article proposes a novel conceptual design framework that employs EAL as a design tool and requires very little building information at the design outset. This means that designers may commence from a definition of required EAL and arrive at a number of feasible structural solutions without the need for any detailed design calculations or numerical analysis. This works by transforming the building performance definition to a design solution space using a number of simplifying assumptions. A suitable structural response backbone is subsequently determined and used to identify feasible building typologies and associated structural geometries. The assumptions made to implement such a conceptual design framework are discussed and justified herein followed by a case study application. This proposed design framework is intended to form the first step in seismic design to identify suitable typologies and layouts before subsequent member detailing and design verification. This way, engineers, architects, and clients can make more informed decisions that target certain performance goals at the beginning of design before further refinement.
Keywords:conceptual design  expected annual loss  performance-based earthquake engineering  storey loss function
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号