首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard
Authors:A Steele  M D Fries  H E F Amundsen  B O Mysen  M L Fogel  M Schweizer  N Z Boctor
Abstract:Abstract— We report a comprehensive imaging study including confocal microRaman spectroscopy, scanning electron microscopy (SEM), and 3‐D extended focal imaging light microscopy of carbonate globules throughout a depth profile of the Martian meteorite Allan Hills (ALH) 84001 and similar objects in mantle peridotite xenoliths from the Bockfjorden volcanic complex (BVC), Svalbard. Carbonate and iron oxide zoning in ALH 84001 is similar to that seen in BVC globules. Hematite appears to be present in all ALH 84001 carbonate‐bearing assemblages except within a magnesite outer rim found in some globules. Macromolecular carbon (MMC) was found in intimate association with magnetite in both ALH 84001 and BVC carbonates. The MMC synthesis mechanism appears similar to established reactions within the Fe‐C‐O system. By inference to a terrestrial analogue of mantle origin (BVC), these results appear to represent the first measurements of the products of an abiotic MMC synthesis mechanism in Martian samples. Furthermore, the ubiquitous but heterogeneous distribution of hematite throughout carbonate globules in ALH 84001 may be partly responsible for some of the wide range in measured oxygen isotopes reported in previous studies. Using BVC carbonates as a suitable analogue, we postulate that a low temperature hydrothermal model of ALH 84001 globule formation is most likely, although alteration (decarbonation) of a subset of globules possibly occurred during a later impact event.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号