首页 | 本学科首页   官方微博 | 高级检索  
     


Texture, mineralogy, and rock strength in horizontal stress-related coal mine roof falls
Authors:S.E. Phillipson  
Affiliation:aMine Safety & Health Administration, Roof Control Division, Pittsburgh Safety & Health Technology Center, P.O. Box 18233, Pittsburgh, PA 15236, United States
Abstract:Geologic structures can represent planes of preferential weakness that, by dismembering the roof beam, may contribute to the failure of roof spans. However, beam deflection and roof failure also occur in rocks where no visible geologic discontinuities are present. This suggests that roof failure may depend on rock strength, which in turn depends on intrinsic textural properties inherent to the rock. In this study, rock samples were collected from horizontal stress-related roof fall material in coal mines for petrographic characterization and compressive strength testing. Brittle, stress failure-prone rock types include thinly interlaminated siltstone and shale, and black shale that had been lightly recrystallized. Samples exhibit a narrow range of density values between approximately 2.5–3.0 g/cm3 but exhibit a wide range of unconfined compressive strength values, between approximately 20–70 MPa. Results of laboratory observations suggest that for samples of coal mine immediate roof shale, compressive strength is not well correlated with density, grain size, sutured grain boundaries, or quartz content. These results for shale are generally at odds with the results of similar studies for sandstone. The great variability of strength, texture, and mineralogy documented in these samples may be an indication of their complexity and the need for specialized methodology in the study of shale strength.
Keywords:Petrography   Horizontal stress   Roof fall   Coal mine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号