首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Growth zoning of garnet porphyroblasts: Grain boundary and microtopographic controls
Authors:Tim J Dempster  Sarah Coleman  Ross Kennedy  Peter Chung  Roderick W Brown
Institution:School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK
Abstract:Chemical zoning in the outer few 10s of microns of garnet porphyroblasts has been investigated to assess the scale of chemical equilibrium with matrix minerals in a pelitic schist. Garnet porphyroblasts from the Late Proterozoic amphibolite facies regional metamorphic mica schists from Glen Roy in the Scottish Highlands contain typical prograde growth zoning patterns. Edge compositions have been measured via a combination of analysis of traverses across the planar edges of porphyroblast surfaces coupled to X-ray mapping of small areas within polished thin sections at the immediate edge of the porphyroblasts. These approaches reveal local variation in garnet composition, especially of grossular (Ca) and almandine (Fe) components, with a range at the edge from <7 mol.% grs to >16 mol.% grs, across distances of less than 50 µm. This small-scale patchy compositional zoning is as much variation as the core–rim compositional zoning across the whole of a 3 mm porphyroblast. Ca and Fe heterogeneity occurs on a scale suggesting a combination of inefficient diffusive exchange across grain boundaries during prograde growth and the evolving microtopography of the porphyroblast surface control garnet composition. The latter creates haloes of compositional zoning adjacent to some inclusions, which typically extend from the inclusion towards the porphyroblast edge during further growth. The lack of a consistent equilibrium composition at the garnet edge is also apparent in the internal zoning of the porphyroblast and so processes occurring during entrapment of some mineral inclusions have a profound influence on the overall chemical zoning. Garnet compositions and associated zoning patterns are widely used by petrologists to reconstruct P–T–t paths for crustal rocks. The evidence of extremely localized (10–50 µm scale) equilibrium during growth further undermines these approaches.
Keywords:garnet  grain boundaries  local equilibrium  prograde growth zoning  surface microtopography
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号