首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Study on Height Reassignment for the AMV Products of the FY-2C Satellite
Authors:Chengyin Yang  Qifeng Lu  Peng Zhang
Institution:1. Meteorology Institute, PLA University of Science and Technology, Nanjing, 211101, China
3. Harbin Air Force Flight Academy, Harbin, 150001, China
2. National Satellite Meteorological Center, Beijing, 100081, China
Abstract:A method for using height reassignment to improve the quality of satellite-derived atmospheric motion vectors (AMVs) is presented. The rationale underlying height reassignment is explored, and the technical details are studied by applying three height reassignment schemes that use NCEP reanalysis winds. The quality of the AMVs is generally improved following reassignment, although the magnitude of the improvement differs according to the scheme applied. Scheme 3 provides the best quality and stability, followed by Scheme 1 and Scheme 2. The negative biases in the zonal components of the AMVs decrease from ?5, ?4] m s?1 to <?1 m s?1 following reassignment. The meridional components also improve. The AMVs derived from the infrared and water vapor channels improve by 58.7% and 25%, respectively. The feasibility of using Scheme 3 in the operational derivation of AMVs is studied by incorporating the forecast wind field predicted by a T511 medium-range numerical weather prediction (NWP) system. Incorporating the 12-h forecast reduces the negative biases in zonal winds and positive biases in meridional winds retrieved from the water vapor channel, improving the overall quality of the AMVs by 26.7%. Extending the validity period of the forecast field linearly reduces the improvement in retrieved AMVs, but the magnitude of this reduction is small. Incorporating the 120-h forecast field still results in a 13% improvement, although it may eliminate a larger number of AMVs of good quality.
Keywords:AMV  height reassignment  the wind field of NWP  quality control
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《Acta Meteorologica Sinica》浏览原始摘要信息
点击此处可从《Acta Meteorologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号