首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experiments using a long-time-scale shelf circulation model of relevance to the Labrador Current
Institution:1. Department of Physics, Memorial University of Newfoundland, St. John''s, Newfoundland, Canada, AIB 3X7;2. Lakes Research Branch, National Water Research Institute, Burlington, Ontario, Canada, L7R 4A6;1. Large Fire Laboratory Group, Research and Development Division National Research Institute of Fire and Disaster (NRIFD), Chofu, Tokyo 182-8508, Japan;2. Fire Research Division, Engineering Laboratory National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899-8662, USA;1. Department of Civil Engineering, The NorthCap University, Gurugram 122017, India;2. Department of Civil Engineering, Indian Institute of Technology, Delhi 110016, India;3. Scientist, Terminal Ballistic Research Laboratory, Chandigarh 166030, India;1. Product Development and Advisory Services Division, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia;2. Advanced Oleochemical Technology Division, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
Abstract:Experiments are described using a three-dimensional, shelf circulation model. The model geometry consists of a rectangle in latitude-longitude space with a shelf-slope region bordering the northern and western boundaries and a deep ocean region in the southeast. Relatively light water is flushed in through the northern boundary and allowed to exit through the southern boundary, a situation of relevance to the southward flowing Labrador Current. In an earlier paper, we showed the downstream development of a shelf break current. In that paper, bottom friction was parallel to bottom geostrophic velocity. In this paper, bottom friction is parallel to bottom velocity. This leads to a more diffuse downstream jet. We show that changing the density contrast across the front does not change its width. On the other hand, a sharper front is obtained when a small trough is introduced into the bottom topography. We also describe an experiment in which the density of the inflowing water is varied seasonally. This leads to a seasonal redistribution of the southward transport across the shelf, similar to a suggestion made by Myers et al. (1989) Seasonal and interannual variability of the Labrador Current and West Greenland Current. Department of Fisheries and Oceans, Canada] for the Newfoundland Shelf. This redistribution results from the seasonal pulsing of fresh water down the shelf, which, in turn, influences transport through the Joint Effect of Baroclinicity And Relief (JEBAR), and is similar to the mechanism proposed by Lazier and Wright (1993) Journal of Physical Oceanography, 23, 659–678].Other results concern the splitting of the shelf break jet. We show that in the previous paper, the splitting of the jet was influenced by the numerical formulation of the outflow condition at the southern boundary. We also show that the splitting can be suppressed by specifying the density of water flowing into the model domain through the southern boundary, rather than allowing this to be determined by the previous history of mixing and outflow on the boundary.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号